(a)d y d x = y ′ \frac{dy}{dx}=y' d x d y = y ′
(i)
y = ln [ cos − 1 ( ( R + 2 ) x ) ] y ′ = 1 cos − 1 ( ( R + 2 ) x ) ⋅ ( − 1 ) cos − 2 ( ( R + 2 ) x ) ⋅ ⋅ ( − sin ( ( R + 2 ) x ) ) ⋅ ( R + 2 ) = = tan ( ( R + 2 ) x ) ⋅ ( R + 2 ) d y d x = tan ( ( R + 2 ) x ) ⋅ ( R + 2 ) y=\ln[\cos^{-1}((R+2)x)]\\
y'=\frac{1}{\cos^{-1}((R+2)x)}\cdot(-1)\cos^{-2}((R+2)x)\cdot\\
\cdot(-\sin((R+2)x))\cdot(R+2)=\\
=\tan((R+2)x)\cdot (R+2)\\
\frac{dy}{dx}=\tan((R+2)x)\cdot (R+2) y = ln [ cos − 1 (( R + 2 ) x )] y ′ = c o s − 1 (( R + 2 ) x ) 1 ⋅ ( − 1 ) cos − 2 (( R + 2 ) x ) ⋅ ⋅ ( − sin (( R + 2 ) x )) ⋅ ( R + 2 ) = = tan (( R + 2 ) x ) ⋅ ( R + 2 ) d x d y = tan (( R + 2 ) x ) ⋅ ( R + 2 )
(ii)
x 3 − 2 y 2 = tan ( x 2 y 3 ) 3 x 2 − 2 ⋅ 2 y ⋅ y ′ = 1 cos 2 ( x 2 y 3 ) ⋅ ( 2 x y 3 + x 2 ⋅ 3 y 2 ⋅ y ′ ) 3 x 2 − 4 y ⋅ y ′ = 1 cos 2 ( x 2 y 3 ) ⋅ ( 2 x y 3 + 3 x 2 y 2 ⋅ y ′ ) ( 3 x 2 − 4 y ⋅ y ′ ) cos 2 ( x 2 y 3 ) = 2 x y 3 + 3 x 2 y 2 ⋅ y ′ y ′ = 2 x y 3 − 3 x 2 ⋅ cos 2 ( x 2 y 3 ) − 4 y cos 2 ( x 2 y 3 ) − 3 x 2 y 2 d y d x = 2 x y 3 − 3 x 2 ⋅ cos 2 ( x 2 y 3 ) − 4 y cos 2 ( x 2 y 3 ) − 3 x 2 y 2 x^3-2y^2=\tan(x^2y^3)\\
3x^2-2\cdot2y\cdot y'=\frac{1}{\cos^2(x^2y^3)}\cdot(2xy^3+x^2\cdot3y^2\cdot y')\\
3x^2-4y\cdot y'=\frac{1}{\cos^2(x^2y^3)}\cdot(2xy^3+3x^2y^2\cdot y')\\
(3x^2-4y\cdot y')\cos^2(x^2y^3)=2xy^3+3x^2y^2\cdot y'\\
y'=\frac{2xy^3-3x^2\cdot\cos^2(x^2y^3)}{-4y\cos^{2}(x^2y^3)-3x^2y^2}\\
\frac{dy}{dx}=\frac{2xy^3-3x^2\cdot\cos^2(x^2y^3)}{-4y\cos^{2}(x^2y^3)-3x^2y^2} x 3 − 2 y 2 = tan ( x 2 y 3 ) 3 x 2 − 2 ⋅ 2 y ⋅ y ′ = c o s 2 ( x 2 y 3 ) 1 ⋅ ( 2 x y 3 + x 2 ⋅ 3 y 2 ⋅ y ′ ) 3 x 2 − 4 y ⋅ y ′ = c o s 2 ( x 2 y 3 ) 1 ⋅ ( 2 x y 3 + 3 x 2 y 2 ⋅ y ′ ) ( 3 x 2 − 4 y ⋅ y ′ ) cos 2 ( x 2 y 3 ) = 2 x y 3 + 3 x 2 y 2 ⋅ y ′ y ′ = − 4 y c o s 2 ( x 2 y 3 ) − 3 x 2 y 2 2 x y 3 − 3 x 2 ⋅ c o s 2 ( x 2 y 3 ) d x d y = − 4 y c o s 2 ( x 2 y 3 ) − 3 x 2 y 2 2 x y 3 − 3 x 2 ⋅ c o s 2 ( x 2 y 3 )
(iii)
y = ( 1 + x 2 ) x ln y = ln ( ( 1 + x 2 ) x ) ln y = x ln ( 1 + x 2 ) 1 y ⋅ y ′ = 1 2 x l n ( 1 + x 2 ) + x ⋅ 1 1 + x 2 ⋅ 2 x y ′ = ( 1 2 x l n ( 1 + x 2 ) + x ⋅ 2 x 1 + x 2 ) ( 1 + x 2 ) x d y d x = ( 1 2 x l n ( 1 + x 2 ) + x ⋅ 2 x 1 + x 2 ) ( 1 + x 2 ) x y=(1+x^2)^{\sqrt{x}}\\
\ln y=\ln((1+x^2)^{\sqrt{x}})\\
\ln y=\sqrt{x}\ln(1+x^2)\\
\frac{1}{y}\cdot y'=\frac{1}{2\sqrt{x}}ln(1+x^2)+\sqrt{x}\cdot\frac{1}{1+x^2}\cdot 2x\\
y'=(\frac{1}{2\sqrt{x}}ln(1+x^2)+\sqrt{x}\cdot\frac{2x}{1+x^2})(1+x^2)^{\sqrt{x}}\\
\frac{dy}{dx}=(\frac{1}{2\sqrt{x}}ln(1+x^2)+\sqrt{x}\cdot\frac{2x}{1+x^2})(1+x^2)^{\sqrt{x}} y = ( 1 + x 2 ) x ln y = ln (( 1 + x 2 ) x ) ln y = x ln ( 1 + x 2 ) y 1 ⋅ y ′ = 2 x 1 l n ( 1 + x 2 ) + x ⋅ 1 + x 2 1 ⋅ 2 x y ′ = ( 2 x 1 l n ( 1 + x 2 ) + x ⋅ 1 + x 2 2 x ) ( 1 + x 2 ) x d x d y = ( 2 x 1 l n ( 1 + x 2 ) + x ⋅ 1 + x 2 2 x ) ( 1 + x 2 ) x
(b)
f ( x ) = x 5 + 4 x + 8 f ′ ( x ) = 5 x 4 + 4 x 5 + 4 x + 8 = 3 x 5 + 4 x + 5 = 0 x = − 1 ( − 1 ) 5 + 4 ( − 1 ) + 5 = − 1 − 4 + 5 = 0 ( f − 1 ) ′ ( 3 ) = 1 f ′ ( − 1 ) f ′ ( − 1 ) = 5 ⋅ ( − 1 ) 4 + 4 = 5 + 4 = 9 ( f − 1 ) ′ ( 3 ) = 1 9 f(x)=x^5+4x+8\\
f'(x)=5x^4+4\\
x^5+4x+8=3\\
x^5+4x+5=0\\
x=-1\\
(-1)^5+4(-1)+5=-1-4+5=0\\
(f^{-1})'(3)=\frac{1}{f'(-1)}\\
f'(-1)=5\cdot(-1)^4+4=5+4=9\\
(f^{-1})'(3)=\frac{1}{9} f ( x ) = x 5 + 4 x + 8 f ′ ( x ) = 5 x 4 + 4 x 5 + 4 x + 8 = 3 x 5 + 4 x + 5 = 0 x = − 1 ( − 1 ) 5 + 4 ( − 1 ) + 5 = − 1 − 4 + 5 = 0 ( f − 1 ) ′ ( 3 ) = f ′ ( − 1 ) 1 f ′ ( − 1 ) = 5 ⋅ ( − 1 ) 4 + 4 = 5 + 4 = 9 ( f − 1 ) ′ ( 3 ) = 9 1
(c)
g ( x ) = ( 1 − x ) ( 1 − 2 x ) . . . ( 1 − n x ) g ′ ( x ) = − ( 1 − 2 x ) ( 1 − 3 x ) . . . ( 1 − n x ) + + ( − 2 ) ( 1 − x ) ( 1 − 3 x ) . . . ( 1 − n x ) + + . . . + ( − n ) ( 1 − x ) ( 1 − 2 x ) . . . ( 1 − ( n − 1 ) x ) g ′ ( 0 ) = − 1 + ( − 2 ) + . . . + ( − n ) = = − ( 1 + 2 + . . . + n ) = − 1 + n 2 ⋅ n = − n 2 + n 2 g(x)=(1-x)(1-2x)...(1-nx)\\
g'(x)=-(1-2x)(1-3x)...(1-nx)+\\
+(-2)(1-x)(1-3x)...(1-nx)+\\
+...+(-n)(1-x)(1-2x)...(1-(n-1)x)\\
g'(0)=-1+(-2)+...+(-n)=\\
=-(1+2+...+n)=-\frac{1+n}{2}\cdot n=-\frac{n^2+n}{2} g ( x ) = ( 1 − x ) ( 1 − 2 x ) ... ( 1 − n x ) g ′ ( x ) = − ( 1 − 2 x ) ( 1 − 3 x ) ... ( 1 − n x ) + + ( − 2 ) ( 1 − x ) ( 1 − 3 x ) ... ( 1 − n x ) + + ... + ( − n ) ( 1 − x ) ( 1 − 2 x ) ... ( 1 − ( n − 1 ) x ) g ′ ( 0 ) = − 1 + ( − 2 ) + ... + ( − n ) = = − ( 1 + 2 + ... + n ) = − 2 1 + n ⋅ n = − 2 n 2 + n
Comments