Answer to Question #91557 in Analytic Geometry for Ra

Question #91557
Show that the angle between the two lines in which the plane x-y+2z=0 intersects the cone x²+y²-4z²+6yz=0 is tan⁻¹(√(6/7))
1
Expert's answer
2019-07-19T09:48:08-0400
"1) x - y + 2z = 0 \\leftrightarrow z = \\frac{(y-x)}{2}""2)x^2 +y^2 -4z^2 +6yz = 0"

After placing z out 1) to 2) we get

"3)x^2 + y^2 - (y-x)^2 + 3y(y-x) = 0 \\leftrightarrow y(3y-x)=0"


Let's find intersection line equations out of 3)

"a) x = t, y = \\frac{1}{3}t, z = -\\frac{1}{3}t""b) x = t, y = 0, z = - \\frac{1}{2}t"

then we find points on this lines and build collinear vectors of them

"a)A(3, 1, -1), B(6, 2,-2), \\overline{AB} = (3, 1, -1)"

"b)C(2, 0, -1), D(4, 0,-2), \\overline{CD} = (2, 0, -1)"

Then we use the scalar product formula to find the angle between vectors lying on intersection lines

"\\overline{AB}\\cdot \\overline{CD} = |\\overline{AB}| |\\overline{CD}|cos(\\angle(\\overline{AB} , \\overline{CD}) )"

"7 = \\sqrt{5}\\sqrt{11}cos(\\angle(\\overline{AB} , \\overline{CD}) )"

"cos{\\angle(\\overline{AB} , \\overline{ CD}) } = \\sqrt{\\frac{49}{55}}\\implies\\angle(\\overline{AB} , \\overline{CD}) \\approx 0.336."

"\\arctan{\\angle(\\overline{AB} , \\overline{CD}) } = \\frac{\\pi}{2} - \\arccos(\\tfrac{\\angle(\\overline{AB} , \\overline{CD}) }{\\sqrt{1 +\\angle(\\overline{AB} , \\overline{CD})^2 }}) \\approx"

"\\approx 1.57 - 1.24 = 0.33 \\ne 0.746 \\approx \\arctan(\\sqrt{6\/7})"




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS