57 424
Assignments Done
Successfully Done
In February 2018
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Algebra Question for Praveen

Question #6889
In an Arithmetic Progression(AP) if Sm=Sn, then prove that Sm+n=0
Expert's answer
The sum of the first n terms of an arithmetic progression can be expressed in a such way:

S(n) = n*(a(1)+a(n))/2,

where a(1) is the initial term of an arithmetic progression and a(n) = a(1) + (n-1)d is the n-th term of the progression.

Let's consider equality S(n) = S(m):

S(n) = n*(a(1)+a(n)) = m*(a(1)+a(n)) = S(m)& ==>

a(1)*(n-m) = a(n)*(m-n)& ==>

a(1) = -a(n)& ==>

a(1) = -(a(1)+(n-1)*d)& ==>

n=1: 2*a(1)=0& ==> a(1)=0;
n=2: 2*a(2)=d& ==> d=0;

a(1)=d=0& ==> S(m)=S(n)=S(m)=S(m+n)=0.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be first!

Leave a comment

Ask Your question