# Answer on Algebra Question for junel

Question #3876

If a,b ЄR and b≠0 show that:

a. |a|= √a

b. |a/b|= |a|/|b|

a. |a|= √a

^{2}b. |a/b|= |a|/|b|

Expert's answer

a. Show that |a|= √a

Recall that

|a|=a if a>=0

and

|a|=-a otherwise.

Let a>=0. Then

sqrt{a^2} = a = |a|

Suppose a<0. Then a=-b, where b>0, so |a|=b.

On the other hand,

√a

b. Show that |a/b|= |a|/|b|

Consider the following cases:

1) Let a>=0, b>0.

Then |a/b|= a/b = |a|/|b|.

2) Suppose a>=0, b<0.

Then a/b<0, |a|=a, |b|=-b, so

|a/b|= -(a/b) = a/(-b) = |a|/|b|.

3) Suppose a<0, b>0.

Then a/b<0, |a|=-a, |b|=b, so

|a/b|= -(a/b) = (-a)/b = |a|/|b|.

3) Finally, let a<0, b<0.

Then a/b>0, |a|=-a, |b|=-b, so

|a/b|= a/b = (-a)/(-b) = |a|/|b|.

^{2}Recall that

|a|=a if a>=0

and

|a|=-a otherwise.

Let a>=0. Then

sqrt{a^2} = a = |a|

Suppose a<0. Then a=-b, where b>0, so |a|=b.

On the other hand,

√a

^{2}= √(-b)^{2}= √b^{2}= b = |a|b. Show that |a/b|= |a|/|b|

Consider the following cases:

1) Let a>=0, b>0.

Then |a/b|= a/b = |a|/|b|.

2) Suppose a>=0, b<0.

Then a/b<0, |a|=a, |b|=-b, so

|a/b|= -(a/b) = a/(-b) = |a|/|b|.

3) Suppose a<0, b>0.

Then a/b<0, |a|=-a, |b|=b, so

|a/b|= -(a/b) = (-a)/b = |a|/|b|.

3) Finally, let a<0, b<0.

Then a/b>0, |a|=-a, |b|=-b, so

|a/b|= a/b = (-a)/(-b) = |a|/|b|.

Need a fast expert's response?

Submit orderand get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

## Comments

## Leave a comment