Question #2319

What is the& distance between two points: (6, -2), (-2,8)?

Expert's answer

The distance is equal to

<img src="/cgi-bin/mimetex.cgi?d%20=%20%5Csqrt%7B%28x_2-x_1%29%5E2%20+%20%28y_2%20-y_1%29%5E2%7D%20=%20%5Csqrt%7B%286-%28-2%29%29%5E2%20+%20%28-2%20-%208%29%5E2%7D%20=%20%5C%5C%20=%20%5Csqrt%7B8%5E2%20+%20%28-10%29%5E2%7D%20%5Capprox%2012.8" title="d = \sqrt{(x_2-x_1)^2 + (y_2 -y_1)^2} = \sqrt{(6-(-2))^2 + (-2 - 8)^2} = \\ = \sqrt{8^2 + (-10)^2} \approx 12.8">

<img src="/cgi-bin/mimetex.cgi?d%20=%20%5Csqrt%7B%28x_2-x_1%29%5E2%20+%20%28y_2%20-y_1%29%5E2%7D%20=%20%5Csqrt%7B%286-%28-2%29%29%5E2%20+%20%28-2%20-%208%29%5E2%7D%20=%20%5C%5C%20=%20%5Csqrt%7B8%5E2%20+%20%28-10%29%5E2%7D%20%5Capprox%2012.8" title="d = \sqrt{(x_2-x_1)^2 + (y_2 -y_1)^2} = \sqrt{(6-(-2))^2 + (-2 - 8)^2} = \\ = \sqrt{8^2 + (-10)^2} \approx 12.8">

## Comments

## Leave a comment