57 490
Assignments Done
Successfully Done
In February 2018
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Algebra Question for Tsit Lam

Question #22747
Show that: a commutative ring is Hilbert iff all of its quotients are rad-nil.
Expert's answer
Recall that a commutative ring R iscalled Hilbert if every prime ideal in R is an intersection of maximalideals. Note that this property is inherited by all quotients. If R isHilbert, then Nil(R), being (always) the intersection of prime ideals inR, is also an intersection of maximal ideals in R. This shows thatNil(R) = rad(R), and the same equation also holds for allquotients of R. This proves the “only if” part, and the “if” part isclear.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be first!

Leave a comment

Ask Your question