Answer to Question #17370 in Algebra for Melvin Henriksen

Question #17370
Show that the following are also equivalent: (A) R is reduced (no nonzero nilpotents), and K-dim R = 0. (B) R is von Neumann regular. (C) The localizations of R at its maximal ideals are all fields.
1
Expert's answer
2012-10-31T08:54:25-0400
We know that for acommutative ring R, show that the following are equivalent:
(1)R has Krull dimension 0.
(2)rad R is nil and R/rad R is von Neumann regular.
(3)For any a ∈R, the descending chain Ra ⊇ Ra2 ⊇ . . . stabilizes.
(4)For any a ∈R, there exists n ≥ 1 such that an is regular.
Upon specializing to reduced rings,(1) becomes (A) and (2) becomes (B), so we have (A) ⇔ (B). The implication (A) ⇒ (C) is already done in (1) ⇒ (2) above, and (C)⇒(A) follows from a similar standard local-global argument in commutativealgebra.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS
paypal