57 252
Assignments Done
Successfully Done
In February 2018
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Algebra Question for sanches

Question #16873
Let a be an element in a ring such that ma = 0 = a^(2^r) , where m ≥ 1 and r ≥ 0 are given integers. Show that (1 + a)^(m^r) = 1.
Expert's answer
The proof is by induction on r.The case r = 0 being clear, we assume r > 0. Since ma =0, the binomial theorem gives (1 + a)m = 1+a2bwhere b is a polynomial in a with integer coefficients. Sincem(a2b) = 0 and (a2b)^2r−1= a^2r*b^2r−1 = 0, theinductive hypothesis (applied to the element a2b)implies that 1 = (1+a2b)^mr−1= [(1 + a)m]^mr−1 = (1+a)^mras desired.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be first!

Leave a comment

Ask Your question