To solve this equation by Ferrari’s method, first divide each term of the equation by the leading coefficient (2). Obtain
x 4 + 9 2 x 3 − 9 2 x 2 − 23 x + 12 = 0 x^4 + \frac{9}{2}x^3 - \frac{9}{2}x^2 - 23x + 12 = 0 x 4 + 2 9 x 3 − 2 9 x 2 − 23 x + 12 = 0
Denote the coefficients of the obtained equation as a = 9 2 , b = − 9 2 , c = − 23 , d = 12 a=\frac{9}{2}, b=-\frac{9}{2}, c=-23, d=12 a = 2 9 , b = − 2 9 , c = − 23 , d = 12 .
Next, you should determine any root of the following equation.
y 3 − b y 2 + ( a c − 4 d ) y − a 2 d + 4 b d − c 2 = 0 y^{3}-by^{2}+(ac-4d)y-a^{2}d+4bd-c^{2}=0 y 3 − b y 2 + ( a c − 4 d ) y − a 2 d + 4 b d − c 2 = 0
Substituting a , b , c , d a,b,c,d a , b , c , d , obtain
y 3 + 9 2 y 2 − 300 2 y − 988 = 0 y^3 + \frac{9}{2}y^2 -\frac{300}{2}y-988=0 y 3 + 2 9 y 2 − 2 300 y − 988 = 0
By substitution method determine that the root is y 0 = − 8 y_0 = -8 y 0 = − 8 .
Then the needed roots is the roots of the next equations.
x 2 + a 2 x + y 0 2 = ± ( a 2 4 − b + y 0 ) x 2 + ( a 2 y 0 − c ) x + y 0 2 4 − d x^{2}+{\frac{a}{2}}x+{\frac {y_{0}}{2}}=\pm {\sqrt {\left({\frac{a^{2}}{4}}-b+y_{0}\right)x^{2}+\left({\frac{a}{2}}y_{0}-c\right)x+{\frac{y_{0}^{2}}{4}}-d}} x 2 + 2 a x + 2 y 0 = ± ( 4 a 2 − b + y 0 ) x 2 + ( 2 a y 0 − c ) x + 4 y 0 2 − d
Substituting a , b , c , d , and y 0 a,b,c,d, \text{and } y_0 a , b , c , d , and y 0 , obtain
x 2 + 9 24 x − 4 = ± 25 16 x 2 + 5 x + 4 x^{2}+{\frac{9}{24}}x - 4=\pm \sqrt{\frac{25}{16}x^2 + 5x + 4} x 2 + 24 9 x − 4 = ± 16 25 x 2 + 5 x + 4
The square-root expressions is the perfect square.
x 2 + 9 24 x − 4 = ± ( 5 4 x + 2 ) 2 x^{2}+{\frac{9}{24}}x - 4=\pm \sqrt{\left(\frac{5}{4}x + 2\right)^2} x 2 + 24 9 x − 4 = ± ( 4 5 x + 2 ) 2
Thus, obtain two equation. Solve the first equation.
x 2 + 9 24 x − 4 = 5 x x + 2 x 2 + x − 6 = 0 x^{2}+{\frac{9}{24}}x - 4=\frac{5}{x}x+2 \\ \\
x^{2}+x-6=0 x 2 + 24 9 x − 4 = x 5 x + 2 x 2 + x − 6 = 0
The roots are − 3 -3 − 3 and 2 2 2 .
Solve the second equation.
x 2 + 9 24 x − 4 = − 5 x x − 2 x 2 + 7 2 x − 2 = 0 x^{2}+{\frac{9}{24}}x - 4=-\frac{5}{x}x-2 \\ \\
x^{2}+\frac{7}{2}x-2=0 x 2 + 24 9 x − 4 = − x 5 x − 2 x 2 + 2 7 x − 2 = 0
The roots are − 4 -4 − 4 and 1 2 \frac{1}{2} 2 1 .
Therefore, the roots of the original equation are − 4 , − 3 , 1 2 , and 2 -4, -3, \frac{1}{2}, \text{and } 2 − 4 , − 3 , 2 1 , and 2 .
Comments