# Answer to Question #9298 in Abstract Algebra for John

Question #9298
0. Show that there exist infinitely many finite sets that are not transitive and infinitely man infinite sets that are not transitive. 1. Show: A set X is transitive if and only if X is a subset of P(X). 2. Show: if every X *belongs to* S is transitive, then union(S) is transitive. 3. Show: an ordinal α is a natural number if and only if every nonempty subset of α has a greatest element. 4.Show: If a set of ordinals X does not have a greatest element, then sup X is a limit ordinal. 5. Show: If X is a nonempty set of ordinals, then intersection(X) is an ordinal. Moreover, intersection(X) is the least element of X.
Unfortunately, your question requires a lot of work and cannot be done for free.
Submit it with all requirements as an assignment to our control panel and we&#039;ll assist you.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!