Abstract Algebra Answers

Questions: 1 153

Free Answers by our Experts: 745

Ask Your question

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Search & Filtering

Consider the following sets together with binary operations. Are they user-friendly? Z with binary operation z1 . z2 = 2z1 - 4z2 Is the set closed under the operation? Is the operation commutative ? Is the operation associative ? Is there an identity? If there is an identity element then does every element have an inverse relative to the operation _ Consider R together with x . y = x/y. Ask the same questions as in last example.
Prove or disprove that C~ R as fields.
1. which of the following statement is true a. \\(\\sim (p\\vee q)=\\sim (p\\wedge \\sim q)\\) b. \\((p\\vee q)\\wedge (p\\vee r)=p\\vee (q\\wedge r)\\) c. \\((p\\wedge q)\\wedge (p\\vee r)=p\\vee (q\\wedge r)\\) d. \\((p\\wedge q)\\vee (p\\vee r)=p\\vee (q\\wedge r)\\) 2. ____ reads “the goods are standard if and only if the goods are expensive” a. \\(\\sim (\\sim p\\wedge \\sim q)\\) b. \\(\\sim \\sim q\\) c. \\(p\\leftrightarrow q\\) d. \\(\\sim p\\wedge q\\)

1. \\((p\\wedge q)= (q\\wedge p)\\) and \\((p\\vee q) = (q\\vee p)\\) implies an _____ a. Idempotent Laws b. Associative laws c. Distributive Laws d. Commutative Laws 2. given that\\(A=\\begin{pmatrix}1 & 2 & 3\\\\ 4 & 5 & 6 \\end{pmatrix}\\)\nand \\[B=\\begin{pmatrix} 1 & 2\\\\ 3& 4\\\\ 5& 6 \\end{pmatrix}\\]\n. Find AB a. \\(\\begin{pmatrix} 0 & 12 & 17\\\\ 19 & 26 & 31\\\\ 29 & 40 & 51 \\end{pmatrix}\\) b. \\(\\begin{pmatrix} 5 & 12 & 15\\\\ 19 & 26 & 31\\\\ 29 & 40 & 51 \\end{pmatrix}\\) c. \\(\\begin{pmatrix} 0 & 12 & 17\\\\ 19 & 26 & 31\\\\ 20 & 40 & 45 \\end{pmatrix}\\) d. \\(\\begin{pmatrix} 0 & 12 & 17\\\\ 7 & 10 & 31\\\\ 20 & 40 & 45 \\end{pmatrix}\\)


1. ____is equivalent to \\((p\\vee q)\\) a. \\(\\sim (\\sim p\\wedge \\sim q)\\) b. \\((\\sim \\sim q)\\) c. \\((p\\leftrightarrow q)\\) d. \\((\\sim p\\wedge q)\\) 2. \\((p\\vee q)\\vee r=p\\vee (q\\vee r)\\) and \\((p\\wedge q)\\wedge r = p\\wedge (q\\wedge r)\\) implies an ___ a. Distributive Laws b. Commutative Laws c. Associative laws d. Idempotent Laws
Let d ∈N , where d ≠1 and d is not divisible by the square of a prime. Prove that N:Z[square root of d] maps N union {0} : N(a+b sqr root d) = |a^2 -db^2| satisfies the following properties for x,y belongs to Z[sqr root d]. 1. N(x) = 0 if x=0. 2 N(xy) = N(x)N(y) 3. N(x) =1 if x is a unit 4. N(x) is prime if x is irreducible.
If p*q = p^2-q^2-2pq. Find the inverse of p under the operation.
State and prove generalized commutative law in a commutative semigroup
Q. Find the dimension of the subspace of R4 that is span of the vectors (█(1¦(-1)@0@1)), (█(2¦1@1@1)),(█(0¦0@0@0)),(█(1¦1@-2@-5)) Q. Choose the correct answer. Q. Let b and c are elements in a group G and e is identity element of G. If b5=c3=e,then inverse of bcb2 is a. b2cb b. b3c2b4 d. b2c2b4
Let N ∈d , where d ≠1 and d is not divisible by the square of a prime. Prove that N:Z[square root of d] maps N union {0} : N(a+b sqr root d) = |a^2 -db^2| satisfies the following properties for x,y belongs to Z[sqr root d]. 1. N(x) = 0 if x=0. 2 N(xy) = N(x)N(y) 3. N(x) =1 if x is a unit 4. N(x) is prime if x is irreducible.
LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS
paypal