57 234
Assignments Done
Successfully Done
In February 2018
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Abstract Algebra Question for Melvin Henriksen

Question #24889
Let I be a left ideal in a ring R such that, for some integer n, an = 0 for all a ∈ I.
Show that I contains a nonzero nilpotent left ideal, and R has a nonzero nilpotent ideal.
Expert's answer
We may assume n is chosenminimal. Since I <> 0, n ≥ 2. Fix an element a ∈ I with an−1 <>0. Then an−1Ran−1 =0, so (Ran−1R)2 = 0. Therefore Ran−1Ris a nonzero nilpotent ideal, and I contains the nonzero nilpotentleft ideal Ran−1.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be first!

Leave a comment

Ask Your question