57 431
Assignments Done
Successfully Done
In February 2018
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Abstract Algebra Question for sanches

Question #23481
Let H be a normal subgroup of G. If H is finite, show that I is also nilpotent.
Expert's answer
Any σ ∈ G defines a conjugation automorphism on thesubring kH ⊆ kG, and this automorphism must takeradkH to rad kH. Therefore, (rad kH)σ ⊆ σ · rad kH ⊆ I, which shows that I is anideal of kG. This method also shows that In = kG · (radkH)n for any n ≥ 1, so if H is finite,then I is nilpotent..

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be first!

Leave a comment

Ask Your question