57 418
Assignments Done
Successfully Done
In February 2018
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Abstract Algebra Question for Melvin Henriksen

Question #17182
Let k be a field of characteristic zero, and let R be the Weyl algebra A1(k) with generators x, y and relation xy − yx = 1. Let p(y) ∈ k[y] be a fixed polynomial. Show that R • (x − p(y)) is a maximal left ideal in R, and that the simple R-module V = R/R • (x − p(y)) has R-endomorphism ring equal to k.
Expert's answer
We can identify V as an abelian group with k[y]. In order to use this identificationeffectively, we must describe the action of y and x on “V =k[y]”. Of course, the y action is just left multiplication by y. To describe the x action, consider any v(y) ∈ k[y]. Since x · v(y) = v(y)x+ dv/dy = v(y) (x − p(y)) + p(y)v(y)+ dv/dy, we see that x − p(y) acts on V = k[y]as differentiation with respect to y. To show that RV is simple,consider any v(y) <> 0, say of degree m. Then(x − p(y))m · v(y) is a nonzero constant in k.This shows that R · v(y) = V , so V is simple. Now consider any f ∈EndRV and let f(1) = g(y).Then, in V = k[y]:
0 = f ((x − p(y)) ·1) = (x − p(y)) · g(y) = dg/dy,
so g ∈ k. But then f (v(y)) = f(v(y) · 1) = v(y)g, so f isjust multiplication by the constant g ∈ k. This completes the proof.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be first!

Leave a comment

Ask Your question