62 470
Assignments Done
98,8%
Successfully Done
In June 2018

Answer to Question #17111 in Abstract Algebra for Tsit Lam

Question #17111
R be a simple ring that is finite-dimensional over its center k, show that R is isomorphic to a matrix
algebra over its center k iff R has a nonzero left ideal A with (dimkA)2 ≤ dimkR
Expert's answer
If R ∼ Mn(k), we can take A to be R · E11 for which (dimkA)2 = n2= dimkR. Conversely, suppose R has a nonzero left ideal A with(dimkA)2 ≤ dimkR. Then (nd)2= (dimkV )2 ≤ (dimkA)2 ≤ dimkR= n2d. This implies that d = 1, so D =k and R ∼ Mn(k).

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question

Submit
Privacy policy Terms and Conditions