Answer to Question #156043 in Abstract Algebra for ARCI AZARCON

Question #156043

 Prove that the product of an even permutation and an odd permutation is odd.


1
Expert's answer
2021-01-19T02:06:33-0500

"Solution: Now, ~Our~ first ~claim~ is,\n~every ~permutation~ can ~be ~expressed ~as ~\\\\the ~product ~of ~one ~and~ only~ one~ of~ the ~following:\n\n\\\\~~~~~~~~~~~~~~~~~~~~an~ odd ~number ~of ~transpositions \u2005\u200a\u200a\u27fa odd~ permutation\n\\\\~~~~~~~~~~~~~~~~~~~~an~ even ~number ~of ~transpositions \u2005\u200a\u27fa even~ permutation"

"There ~are ~many ~ways~ to ~write~ a~ permutation~ as ~the ~product~ of~ transpositions, \\\\~and ~they~ can ~vary~ in ~length,~ but~ those~ products~ will ~have~ either ~an~ odd~ or ~an \\\\~even~ number~ of~ factors, ~never~ both.\n\\\\We ~know ~that~ the ~number ~of~ transpositions~ in~ a~ product ~corresponding ~to~ a \\\\~permutation ~that~ is ~a ~cycle ~of ~length ~n ~can ~be ~expressed ~as ~the~ product ~of\\\\ (n\u22121)~ transpositions."

"One ~can~ always ~resort ~to~ following ~the~ pattern:~ Without ~loss~ of ~generality~ \\\\suppose ~n ~is ~odd ~then~\\\\~~~~~~~~~~~~~~~~~~~~~~~~~~~(a_1,a_2,...,a_n)=(a_1,a_n)(a_1,a_{n-1})...(a_1,a_2)\\\\which~is~even~because ~there ~are~ (n-1)~ transpositions.~\\\\ [we~ can~ also ~write ~ (a_1,a_2,...,a_n)=(a_1,a_2)(a_2,a_3)...(a_{n-1},a_n)]"

"Again, ~an ~even ~number~ of~ transpositions \u2005\u200a\u27fa the~ permutation~ is~ even.~\\\\ A~ similar~approach~ can ~be~ drawn~ for~ even~ number~ n."

"So~ a ~cycle ~with~ a ~length~ that~ is~ even~ (has~ an ~even~ number~ of~ elements) ~is~ ODD, \\\\and~ a~ cycle~ with~ a~ length~ that ~is ~odd~ (has~ an ~odd~ number ~of ~elements)~ is~ EVEN." "If ~you~ have~ a~ permutation ~that~ is~ the ~product~ of~ disjoint ~cycles: ~say~ three~ cycles, ~\\\\corresponding ~to ~lengths~n_1,n_2,n_3,~then~ the~ number~ of ~transpositions~ \\\\representing~ this~ permutation ~can ~be~ computed ~by~ the ~parity~ of ~\\\\(n_1-1)+(n_2-1)+(n_3-1)~or ~simply~ the ~parity~(oddness\/evenness) ~of~\\\\n_1+n_2+n_3-1." "Now ~Let ~E ~be~ the~ set ~of ~even~ permutations~ in~ G~ (which~ is~ presumably ~a ~group ~of ~\\\\permutations). Our ~second~ aim~ is ~to ~show~ that ~E ~forms~ a ~subgroup~ of ~G." "Let ~p~ and~ q~ be ~elements~ of~ E.~ Now~ we~ need ~to~ check ~if ~pq^{-1}~ is~ also~ an~ element ~\\\\of ~E. We~ know ~that ~a~ permutation ~is ~called~ an ~even ~permutation~ if ~it ~can ~be~\\\\ written ~as ~a~ product~ of~ an~ even~ number ~of~ transpositions."


"So, let ~p=p_1p_2...p_{2k}~and~q=q_1q_2...q_{2j} ~ be ~a~ representation ~of~ p~ and ~q ~as ~a ~\\\\product ~of~ transpositions.\n\\\\We ~have~ that~q^{-1}=q_{2j}q_{2j-1}...q_2q_1~since ~transpositions~ are ~self ~inverses."


"Thus, pq^{\u22121}=p_1p_2\u22efp_{2k}q_{2j}\u22efq_2q_1 ~is ~indeed~ a ~product ~of ~an ~even ~number ~of ~\\\\transpositions. Furthermore,~ pq^{\u22121}~is~ an ~element~ of ~G~ since~ p~ and ~q~ (and ~thus~ q^{\u22121})\\\\~ are ~elements~ of~ G~ and~ G ~is ~closed ~under~ products ~and ~inverses."


"Thus, pq^{-1} \\in E, implying~ that ~the~ identity ~is~ an~ element ~of~ E~ (by~ taking ~p=q), \\\\that~ it~ is~ closed~ under~ inverse ~(by~ taking~ p=id),~ and ~that ~it ~is~ closed~ under~\\\\ products ~(by ~taking ~q^{\u22121}~instead ~of q) ~and~ E~ is ~a~ subgroup ~of ~G."


"Now~ suppose, ~if ~possible, ~there ~exist ~an ~even ~permutation ~p ~and~ an~ odd ~\\\\permutation q~ such ~that~ there~ product~r=pq~is~even~that~is~r \\in E.~Then~\\\\q=p^{-1}r \\in E~since ~p,r \\in E~and ~E ~is~a~subgroup~of~G.Therefore, q ~is ~a ~even~ \\\\permutation~ but ~by~ assumption ~q ~is ~an~ odd~ permutation, ~contradiction.\\\\Therefore, ~product ~of~ an~ even~ permutation~ and~ an~ odd~ permutation~ is~ an~ odd ~\\\\permutation."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS