Answer to Question #170748 in Mechanical Engineering for Katinghan David

Question #170748

A double acting steam engine runs at 210 rpm. A curve of turning moment plotted on the crank angle base showed the following areas alternatively above and below the mean turning moment line: 880,500,620,720,360,560,440,520mm2

The scales used where 1mm= 520Nm and 1mm= 1o crank angle. If the total fluctuation in speed is limited to 1.85% of the ,mean speed, determine the mass of flywheel necessary if the radius gyration is 1.4m



1
Expert's answer
2021-03-11T06:57:00-0500

Maximum energy =880+E880+E, where E is the minimum energy

E=EmaxEmin=E+880E=880mm2\triangle E=E_{max}-E_{min}=E +880-E=880 mm^2

E=880×520×π180=7986.62666Nm\triangle E=880 \times520 \times \frac{\pi}{180}=7986.62666 Nm

We know that E=mR2w2Cs\triangle E =mR^2w^2C_s

w1=210×1.85×2π60=40.68w_1=210 \times1.85 \times \frac{2 \pi}{60}=40.68

w2=210×2π60=10.995w_2=210 \times \frac{2 \pi}{60}=10.995

w=w1+w22=40.68+10.9952=25.8375w=\frac{w_1+w_2}{2}=\frac{40.68+10.995}{2}=25.8375

Cs=w1w2w=40.6810.99525.8375=1.1489C_s=\frac{w_1-w_2}{w}=\frac{40.68-10.995}{25.8375}=1.1489

E=mR2w2(w1w2w)=mR2w(w1w2)\triangle E =mR^2w^2(\frac{w_1-w_2}{w})=mR^2w(w_1-w_2)

m=ER2w(w1w2)m=\frac{\triangle E}{R^2w(w_1-w_2)}

m=7986.626661.42×25.8375(40.6810.995)=5.313kgm=\frac{7986.62666}{1.4^2 \times 25.8375(40.68-10.995)}=5.313 kg


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment