v=5+3⋅cosx→dxdt=5+3⋅cosx→v=5+3\cdot\cos x\to \frac{dx}{dt}=5+3\cdot\cos x\tov=5+3⋅cosx→dtdx=5+3⋅cosx→
dt=15+3⋅cosxdx→dt=\frac{1}{5+3\cdot\cos x}dx\todt=5+3⋅cosx1dx→
∫dt=∫15+3⋅cosxdx\int dt=\int \frac{1}{5+3\cdot\cos x}dx∫dt=∫5+3⋅cosx1dx →t=tan−1(tan(x/2)2)2+C\to t=\frac{tan^{-1}(\frac{\tan(x/2)}{2})}{2}+C→t=2tan−1(2tan(x/2))+C
if x=0x=0x=0 then t=0→C=0t=0\to C=0t=0→C=0
So,
t=tan−1(tan(x/2)2)2t=\frac{tan^{-1}(\frac{\tan(x/2)}{2})}{2}t=2tan−1(2tan(x/2)) . Answer
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment