Question #102832
A short reinforced concrete column of section 200 mm x 220mm is to be reinforced with 4 numbered steel bars and is required to carru an axial load of 850kN. The stress in the concrete must not exceed 7N/mm^2 and the stress must not exceed 150N/mm^2. Determine the diameter required for the bars and the subsequent stresses occurring in the concrete and the steel under the specified load. (Young's moduli of concrete=14kN/mm^2 and Young's moduli of steel=210kN/mm^2. With suitable sketch
1
Expert's answer
2020-02-13T06:17:31-0500

δst=δco=δ\delta_{st}=\delta_{co}=\delta


(FlSE)co=(FlSE)st(\frac{F\cdot l}{S\cdot E})_{co}=(\frac{F\cdot l}{S\cdot E})_{st}


σcol14109=σstl210109\frac{\sigma_{co}\cdot l}{14\cdot10^9}=\frac{\sigma_{st}\cdot l}{210\cdot10^9}


14σst=210σco14\cdot \sigma_{st}=210\cdot \sigma_{co}


When σst=150106Pa\sigma_{st}=150\cdot 10^6 Pa


14150106=210σcoσco=10106Pa>6106Pa14\cdot 150\cdot 10^6=210\cdot \sigma_{co} \to \sigma_{co}=10\cdot 10^6 Pa>6\cdot 10^6 Pa (not okay!)


When σco=6106Pa\sigma_{co}=6\cdot 10^6 Pa


14σst=2106106σst=90106Pa<150106Pa14\cdot \sigma_{st}=210\cdot 6\cdot 10^6 \to \sigma_{st}=90\cdot 10^6 Pa<150\cdot 10^6 Pa (okay!)


Use σst=90106Pa;σco=6106Pa\sigma_{st}=90\cdot 10^6 Pa; \sigma_{co}=6\cdot 10^6 Pa


Fst+Fco=850000F_{st}+F_{co}=850000


σstSst+σcoSco=850000\sigma_{st}\cdot S_{st}+\sigma_{co}\cdot S_{co}=850000


90106Sst+6106(0.20.22Sst)=85000090\cdot 10^6\cdot S_{st}+6\cdot 10^6\cdot(0.2\cdot 0.22-S_{st})=850000


84Sst=0.850.264Sst=0.006976m2=6976m284\cdot S_{st}=0.85-0.264 \to S_{st}=0.006976 m^2=6976m^2


For one steel bar


S0st=6976/4=1744mm2S_{0st}=6976/4=1744 mm^2


πD24=1744D47.1mm\frac{\pi\cdot D^2}{4}=1744 \to D\approx 47.1 mm Answer







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Steven Odhiambo
05.02.22, 07:29

Thanks alot this is much helpful

LATEST TUTORIALS
APPROVED BY CLIENTS