Find the Inverse Laplace transform of X(s)= -s^2-2s+1/(s+2)(s+3)^2. ROC: Re{s}>-2
L−1{−s2−2s+1(s+2)(s+3)2}=L−1{1s+2−2s+3+2(s+3)2}Use the linearity property of Inverse Laplace Transform:For functions f(s), g(s) and constants a, b:L−1{a⋅f(s)+b⋅g(s)}=a⋅L−1{f(s)}+b⋅L−1{g(s)}=L−1{1s+2}−L−1{2s+3}+L−1{2(s+3)2}=e−2t−2e−3t+e−3t⋅ 2tL^{-1}\left\{\frac{-s^2-2s+1}{\left(s+2\right)\left(s+3\right)^2}\right\}\\ =L^{-1}\left\{\frac{1}{s+2}-\frac{2}{s+3}+\frac{2}{\left(s+3\right)^2}\right\}\\ \mathrm{Use\:the\:linearity\:property\:of\:Inverse\:Laplace\:Transform:}\\ \mathrm{For\:functions\:}f\left(s\right),\:g\left(s\right)\mathrm{\:and\:constants\:}a,\:b:\quad L^{-1}\left\{a\cdot f\left(s\right)+b\cdot g\left(s\right)\right\}=a\cdot L^{-1}\left\{f\left(s\right)\right\}+b\cdot L^{-1}\left\{g\left(s\right)\right\}\\ =L^{-1}\left\{\frac{1}{s+2}\right\}-L^{-1}\left\{\frac{2}{s+3}\right\}+L^{-1}\left\{\frac{2}{\left(s+3\right)^2}\right\}\\ =e^{-2t}-2e^{-3t}+e^{-3t}\cdot \:2tL−1{(s+2)(s+3)2−s2−2s+1}=L−1{s+21−s+32+(s+3)22}UsethelinearitypropertyofInverseLaplaceTransform:Forfunctionsf(s),g(s)andconstantsa,b:L−1{a⋅f(s)+b⋅g(s)}=a⋅L−1{f(s)}+b⋅L−1{g(s)}=L−1{s+21}−L−1{s+32}+L−1{(s+3)22}=e−2t−2e−3t+e−3t⋅2t
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment