Answer to Question #261614 in Electrical Engineering for Mafizur Alam

Question #261614

Find the Inverse Laplace transform of X(s)= -s^2-2s+1/(s+2)(s+3)^2. ROC: Re{s}>-2


1
Expert's answer
2021-11-06T01:37:09-0400

L1{s22s+1(s+2)(s+3)2}=L1{1s+22s+3+2(s+3)2}UsethelinearitypropertyofInverseLaplaceTransform:Forfunctionsf(s),g(s)andconstantsa,b:L1{af(s)+bg(s)}=aL1{f(s)}+bL1{g(s)}=L1{1s+2}L1{2s+3}+L1{2(s+3)2}=e2t2e3t+e3t2tL^{-1}\left\{\frac{-s^2-2s+1}{\left(s+2\right)\left(s+3\right)^2}\right\}\\ =L^{-1}\left\{\frac{1}{s+2}-\frac{2}{s+3}+\frac{2}{\left(s+3\right)^2}\right\}\\ \mathrm{Use\:the\:linearity\:property\:of\:Inverse\:Laplace\:Transform:}\\ \mathrm{For\:functions\:}f\left(s\right),\:g\left(s\right)\mathrm{\:and\:constants\:}a,\:b:\quad L^{-1}\left\{a\cdot f\left(s\right)+b\cdot g\left(s\right)\right\}=a\cdot L^{-1}\left\{f\left(s\right)\right\}+b\cdot L^{-1}\left\{g\left(s\right)\right\}\\ =L^{-1}\left\{\frac{1}{s+2}\right\}-L^{-1}\left\{\frac{2}{s+3}\right\}+L^{-1}\left\{\frac{2}{\left(s+3\right)^2}\right\}\\ =e^{-2t}-2e^{-3t}+e^{-3t}\cdot \:2t


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment