Answer to Question #219763 in Electrical Engineering for Emmanuel

Question #219763

A parallel resonant circuit has a capacitor 100pF in one branch and the impedance of 100 micro Henry plus a a resistance of 10 ohms in another parallel branch, calculate:

(a) resonant frequency 

(b) impendance of the circuit at the resonance and the line current at resonance 

(c) Q-quality factor of the circuitry


1
Expert's answer
2021-07-25T18:55:02-0400

ωo=1LCωo=1100×106×100×1012ωo=107rads1ωo=2πfofo=1072π=1.591MHz\omega_o=\frac{1}{\sqrt{LC}}\\ \omega_o=\frac{1}{\sqrt{100\times{10^{-6}}\times{100\times{10^{-12}}}}}\\ \omega_o=10^7rads^{-1}\\ \omega_o=2\pi{f_o}\\ f_o=\frac{10^{7}}{2\pi}=1.591MHz

b)

Impedance Z is

Z=R2πfoL12πfoCXL=2πfoL=107×100×106=1000ΩXC=XL=1000ΩXCXL=500ΩZ=R500=500×10500+10=9.8ΩZ=R\|2\pi{f_o}L\|\frac{1}{2\pi{f_o}C}\\ X_L=2\pi{f_o}L=10^7\times{100\times{10^{-6}}}=1000\Omega\\ X_C=X_L=1000\Omega\\ X_C\|X_L=500\Omega\\ Z=R\|500=\frac{500\times{10}}{500+10}=9.8\Omega\\

c)Q=ωoRCQ=107×10×100×1012=0.01Q=\omega_oRC\\ Q=10^7\times{10}\times{100\times{10^{-12}}}=0.01\\

Current cannot be calculated since there's no energy source given in the question.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment