Write the components matrix
[ I a o I a 1 I a 2 ] = [ 1 1 1 1 k k 2 1 k 2 k ] [ I A I B I C ] \begin{bmatrix}
I_{a_{o} } \\
I_{a_{1} } \\
I_{a_{2} }
\end{bmatrix}=\begin{bmatrix}
1 &1&1\\
1&k&k^2 \\
1&k^2&k
\end{bmatrix}\begin{bmatrix}
I_A \\
I_B \\
I_C
\end{bmatrix} ⎣ ⎡ I a o I a 1 I a 2 ⎦ ⎤ = ⎣ ⎡ 1 1 1 1 k k 2 1 k 2 k ⎦ ⎤ ⎣ ⎡ I A I B I C ⎦ ⎤
k = 1 ∠ 12 0 o ; k 2 = 1 ∠ 12 0 o k=1\angle120^o; k^2=1\angle120^o k = 1∠12 0 o ; k 2 = 1∠12 0 o
I A = I a o + I a 1 + I a 2 I_A= I_{a_{o} } + I_{a_{1} } + I_{a_{2} } I A = I a o + I a 1 + I a 2
I a o = 1 3 [ I a + I b + I c ] = 81.777 ∠ 4.693 = 81.777 3 = 27.259 ∠ 4.69 3 o I_{a_{o} }=\frac{1}{3} [I_a + I_b+I_c]= 81.777\angle4.693=\frac{81.777}{3}=27.259\angle4.693^o I a o = 3 1 [ I a + I b + I c ] = 81.777∠4.693 = 3 81.777 = 27.259∠4.69 3 o
I a o = 1 3 [ I A + k I B + k 2 I C ] = 1 3 [ 100 ∠ 3 0 o + ∠ 12 0 o + 50 ∠ 30 0 o + 30 ∠ 18 0 o ] = 173.944 ∠ 43.2 9 o A 3 = 57.98 ∠ 43.2 9 o A I_{a_{o} }=\frac{1}{3} [I_A +k I_B+k^2I_C]=\frac{1}{3} [100\angle30^o+\angle120^o+50\angle300^o+30\angle180^o]=\frac{173.944\angle43.29^oA}{3} =57.98\angle43.29^oA I a o = 3 1 [ I A + k I B + k 2 I C ] = 3 1 [ 100∠3 0 o + ∠12 0 o + 50∠30 0 o + 30∠18 0 o ] = 3 173.944∠43.2 9 o A = 57.98∠43.2 9 o A
I a 2 = 1 3 [ I A + k 2 I B + k I C ] = 1 3 [ 100 ∠ 3 0 o + ∠ − 12 0 o + 50 ∠ 30 0 o + ∠ 12 0 o + 30 ∠ 18 0 o ] = 56.929 ∠ 24.9 6 o A = 18.973 ∠ 24.96 I_{a_{2} }=\frac{1}{3} [I_A +k^2 I_B+kI_C]=\frac{1}{3} [100\angle30^o+\angle-120^o+50\angle300^o+\angle120^o +30\angle180^o]=\frac{56.929\angle24.96^oA} =18.973\angle24.96 I a 2 = 3 1 [ I A + k 2 I B + k I C ] = 3 1 [ 100∠3 0 o + ∠ − 12 0 o + 50∠30 0 o + ∠12 0 o + 30∠18 0 o ] = = 56.929∠24.9 6 o A 18.973∠24.96
Comments