12)Use Cauchy integral formula for derivatives evaluate ∮c z²-2z/(z+1)^2 (z²+4)dz, where C is |z + 2) <2.
∮cz²−2z/(z+1)2(z²+4)dz∮c z²-2z/(z+1)^2 (z²+4)dz∮cz²−2z/(z+1)2(z²+4)dz
=∮𝐵(𝑖/2)1𝑧2+1𝑑𝑧=∮=∮𝐵(𝑖/2)1𝑧2+1𝑑𝑧=∮=∮B(i/2)1z2+1dz=∮
=∮B2i/2(1/2i)/(z+1)2dz−∮B2=∮_{B2}{i/2} (1/2i)/(z+1)^2 dz-\oint_{B2}=∮B2i/2(1/2i)/(z+1)2dz−∮B2
=12i−12i=\frac{1}{2i}-\frac{1}{2i}=2i1−2i1
=0=0=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment