We are given:
"TC = 150Q - 3Q^2+0.25Q^3"
The average cost, "AC = \\dfrac {TC}{Q}" and,
Marginal cost, "MC" is such that
"MC_{n} = TC_{n}-TC_{n-1}"
"\\bold {Example}"
When "Q = 1",
"TC = 150(1)-3(1^2)+0.25(1^3)"
"\\bold {= \\$147.25}"
"AC = \\dfrac {\\$147.25}{1}" "\\bold {=\\$147.25}"
"MC = TC_{1}-TC_{0}"
"\\bold {=?}" ("TC_{0}" does not exist)
When "Q=2,"
"TC = 150(2)-3(2^2)+0.25(2^3)"
"\\bold {=\\$290}"
"AC = \\dfrac {\\$290}{2}" "\\bold {=\\$145}"
"MC = TC_{2}-TC_{1}"
"= \\$290-\\$147.25"
"\\bold {=\\$142.75}"
When "Q=3"
"TC = 150(3)-3(3^2)+0.25(3^3)"
"\\bold {=\\$429.75}"
"AC = \\dfrac {\\$429.75}{3}" "\\bold {=\\$143.25}"
"MC = TC_{3}-TC_{2}"
"= \\$429.75-\\$290"
"\\bold {=\\$139.75}"
The remaining Q=4, 5 and 6 are completed in a similar manner. The table below is the completed solution.
"\\bold {ANSWER}"
"\\\\ \\bold {Q \\hspace{9mm} TC \\hspace {11mm} AC \\hspace {11mm} MC}"
"1 \\hspace{8mm} 147.25 \\hspace {8mm} 147.25 \\hspace {10mm} -"
"2 \\hspace{8mm} 290.00 \\hspace {8mm} 145.00\\hspace {8mm} 142.75"
"3 \\hspace{8mm} 429.75 \\hspace {8mm} 143.25 \\hspace {8mm} 139.75"
"4\\hspace{8mm} 568.00 \\hspace {8mm} 142.00 \\hspace {8mm} 138.25"
"5 \\hspace{8mm} 706.25 \\hspace {8mm} 141.25 \\hspace {8mm} 138.25"
"6 \\hspace{8mm} 846.00 \\hspace {8mm} 141.00 \\hspace {8mm} 139.75"
Comments
Leave a comment