63 065
Assignments Done
99,1%
Successfully Done
In July 2018

Answer to Question #4789 in Other Chemistry for Khatlyn

Question #4789
How many grams of zinc metal must be dissolved in sulfuric acid in order to obtain 500 cubic centimeters of hydrogen at 20 degrees Celsius and 770 torr? Zn(s) + H2SO4 = ZnSO4 + H2(g
Expert's answer
<img src="" alt="">
t = 20ºC
P = 770 torr
m - ?

Zn(s) + H2SO4 = ZnSO4 + H2

t = 20 ºC = 273+20 = 293K
P = 770 torr = 102641 Pa
<img src="" alt="">
<img src="" alt="">
<img src="" alt="">
m(Zn) = 1,635g

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question

Submit
Privacy policy Terms and Conditions