Answer to Question #122556 in Inorganic Chemistry for Mariah

Question #122556
Describe the properties of 3D-network aluminosilicates that lead to their widespread industrial
Expert's answer

ASWs have several desirable properties for use as high-temperature insulating materials, including low thermal conductivity, low heat storage (low volumetric heat capacity), thermal shock resistance, lightweight, good corrosion resistance, and ease of installation. Depending upon the fiber composition, the maximum end-use temperature for ASWs can be as high as 1430 °C (2600 °F). Because of this capability, these fibers are also included in the class of high-temperature insulating wools (HTIWs). Benefits of the use of ASW insulation include reduced energy costs and reduced greenhouse gas emissions. The energy savings can be substantial when compared to conventional high-temperature insulation such as insulating firebrick.

Applications and markets for ASWs are principally industrial and vary by product form and country including furnace linings and components in the cement, ceramic, chemical, fertilizer, forging, foundry, glass, heat treating, nonferrous metals, petrochemical, power generation (cogeneration), and steel industries. ASWs are used for passive fire protection applications where thin, lightweight materials are needed to prevent flame penetration. ASWs are also used to a minor degree in emission control applications such as heat shield insulation, catalytic converter support mat, and filtration media for air bag inflators. Though sometimes referred to in the literature as a substitute for asbestos, aluminosilicate fibers are not typically used in asbestos applications. Aluminosilicate fibers are priced substantially higher than various types of asbestos and have maximum end-use temperatures substantially greater than those for asbestos (which vary depending upon the product but are typically ≤850 °C).

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be the first!

Leave a comment

New on Blog