Given the coordinate transformation
u[sub]1[/sub] = xy
2u[sub]2[/sub] = x[sup]2[/sup] + y[sup]2[/sup]
u[sub]3[/sub] = z,
Determine if the coordinate system is orthogonal.
1
Expert's answer
2011-06-22T08:00:14-0400
The coordinate system is ortogonal if the metric tensor is diagonal. Orthogonal coordinates never have off-diagonal terms in their metric tensor. metric tensor Gij=Summ(L=1 to N) (duL/dxi+duL/dxj) (x y z)=(x1 x2 x3) So we must check if the tensor is diagonal G11 = y2+1+0 = 1+y2 G12 = xy+xy+0 = 2xy = G21 G13 = 0+0+0=0 = G31 G22 = 0+y2+0 = y2 G33 = 0+0+1 = 1 So we can say that given coordinate system isn't ortogonal
"assignmentexpert.com" is professional group of people in Math subjects! They did assignments in very high level of mathematical modelling in the best quality. Thanks a lot
Comments