Since the question does not contain accompanying explanations, I assumed that it had something to do with https://en.wikipedia.org/wiki/Pedal_equation
Based on this, I solved the problem.
"\\boxed{r^m=a^m\\cdot\\cos(m\\theta)}\\\\[0.3cm]\n\\left|\\frac{dr}{d\\theta}\\right|=\\frac{r}{p}\\cdot\\sqrt{r^2-p^2}\\\\[0.3cm]\n\\frac{d}{d\\theta}\\left|r^m=a^m\\cdot\\cos(m\\theta)\\right.\\to m\\cdot r^{m-1}\\cdot\\frac{dr}{d\\theta}=-m\\cdot a^m\\cdot\\sin(m\\theta)\\\\[0.3cm]\n\\boxed{\\frac{dr}{d\\theta}=-\\frac{a^m}{r^{m-1}}\\cdot\\sin(m\\theta)}\\\\[0.3cm]\n\\frac{dr}{d\\theta}=-\\frac{a^m}{r^{m-1}}\\cdot\\sin(m\\theta)=-\\frac{a^m\\cdot r}{r^{m-1}\\cdot r}\\cdot\\sin(m\\theta)=\\\\[0.3cm]\n=-\\frac{a^m\\cdot r}{\\underbrace{r^m}_{=a^m\\cdot\\cos(m\\theta)}}\\cdot\\sin(m\\theta)=\n-\\frac{a^m\\cdot r}{a^m\\cdot\\cos(m\\theta)}\\cdot\\sin(m\\theta)=\\\\[0.3cm]\n=-r\\cdot\\tan(m\\theta)\\to\\boxed{\\frac{dr}{d\\theta}=-r\\cdot\\tan(m\\theta)}"
Then,
"\\left|\\frac{dr}{d\\theta}\\right|=\\frac{r}{p}\\cdot\\sqrt{r^2-p^2}\\to|-r\\cdot\\tan(m\\theta)|=\\frac{r}{p}\\cdot\\sqrt{r^2-p^2}\\\\[0.3cm]\n\\left(|-r\\cdot\\tan(m\\theta)|\\right)^2=\\left(\\frac{r}{p}\\cdot\\sqrt{r^2-p^2}\\right)^2\\\\[0.3cm]\nr^2\\cdot\\tan^2(m\\theta)=\\frac{r^2}{p^2}\\cdot\\left(r^2-p^2\\right)\\\\[0.3cm]\np^2\\cdot\\tan^2(m\\theta)=r^2-p^2\\to p^2\\cdot\\left(1+\\tan^2(m\\theta)\\right)=r^2\\\\[0.3cm]\np^2\\cdot\\frac{1}{\\cos^2(m\\theta)}=r^2\\to p=r\\cdot\\cos(m\\theta)\\\\[0.3cm]\np=\\frac{r\\cdot r^{m-1}}{ r^{m-1}}\\cdot\\cos(m\\theta)=\\frac{\\overbrace{r^m}^{a^m\\cdot\\cos(m\\theta)}}{ r^{m-1}}\\cdot\\cos(m\\theta)\\to\\\\[0.3cm]\np=\\frac{a^m}{r^{m-1}}\\cdot\\cos^2(m\\theta)\\neq\\frac{a^m}{(m+1)r^{m-1}}"
Note : The result is slightly different from what was proposed to prove, but I do not know how to get rid of this discrepancy.
Comments
Leave a comment