Answer to Question #343209 in Quantitative Methods for Raju

Question #343209

Find Larange’s interpolating polynomial passing through set of points



(0,2) (2,-2),(3,-1),Use it to find





at x = 2


1
Expert's answer
2022-05-22T23:42:32-0400

Lagrange Second Order Interpolation Formula  can be written as


f(x)=(xx1)(xx2)(x0x1)(x0x2)y0f(x)=\dfrac{(x-x_1)(x-x_2)}{(x_0-x_1)(x_0-x_2)}y_0

+(xx0)(xx2)(x1x0)(x1x2)y1+(xx0)(xx1)(x2x0)(x2x1)y2+\dfrac{(x-x_0)(x-x_2)}{(x_1-x_0)(x_1-x_2)}y_1+\dfrac{(x-x_0)(x-x_1)}{(x_2-x_0)(x_2-x_1)}y_2

Substitute


f(x)=(x2)(x3)(02)(03)(2)+(x0)(x3)(20)(23)(2)f(x)=\dfrac{(x-2)(x-3)}{(0-2)(0-3)}(2)+\dfrac{(x-0)(x-3)}{(2-0)(2-3)}(-2)

+(x0)(x2)(30)(32)(1)+\dfrac{(x-0)(x-2)}{(3-0)(3-2)}(-1)

=13x253x+2+x23x13x2+23x=\dfrac{1}{3}x^2-\dfrac{5}{3}x+2+x^2-3x-\dfrac{1}{3}x^2+\dfrac{2}{3}x

f(x)=x24x+2f(x)=x^2-4x+2


f(2)=(2)24(2)+2=2f(2)=(2)^2-4(2)+2=-2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment