# Answer to Question #6404 in Matrix | Tensor Analysis for vinita

Question #6404

The following system of equations has a unique solution.

x−5y−9z=−21

−2x+5y−2z=−33

3x−4y+5z=42

You will solve this system using the method of Gauss-Jordan elimination.

Note, you CANNOT interchange rows of the matrix at any step.

Please follow exactly the instructions provided

x−5y−9z=−21

−2x+5y−2z=−33

3x−4y+5z=42

You will solve this system using the method of Gauss-Jordan elimination.

Note, you CANNOT interchange rows of the matrix at any step.

Please follow exactly the instructions provided

Expert's answer

Here is the matrix of the given system:

& 1 -5 -9 | -21

-2& 5 -2 | -33

& 3 -4& 5 |& 42

Let's perform Gauss-Jordan elimination:

& 1 -5 -9& | -21

& 0 -5 -20 | -75

& 0& 11 32 |& 105

& 1 -5 -9& | -21

& 0 -5 -20 | -75

& 0& 0 -12 |& 60

& 1 -5 -9& | -21

& 0 -5 -20 | -75

& 0& 0 -1& | -5

& 1 -5& 0& |& 24

& 0 -5& 0& |& 25

& 0& 0 -1& | -5

& 1 -5& 0& |& 24

& 0 -1& 0& |& 5

& 0& 0& 1& |& 5

& 1& 0& 0& | -1

& 0 -1& 0& |& 5

& 0& 0& 1& |& 5

& 1& 0& 0& | -1

& 0& 1& 0& | -5

& 0& 0& 1& |& 5

So, solution is (-1,-5,5).

& 1 -5 -9 | -21

-2& 5 -2 | -33

& 3 -4& 5 |& 42

Let's perform Gauss-Jordan elimination:

& 1 -5 -9& | -21

& 0 -5 -20 | -75

& 0& 11 32 |& 105

& 1 -5 -9& | -21

& 0 -5 -20 | -75

& 0& 0 -12 |& 60

& 1 -5 -9& | -21

& 0 -5 -20 | -75

& 0& 0 -1& | -5

& 1 -5& 0& |& 24

& 0 -5& 0& |& 25

& 0& 0 -1& | -5

& 1 -5& 0& |& 24

& 0 -1& 0& |& 5

& 0& 0& 1& |& 5

& 1& 0& 0& | -1

& 0 -1& 0& |& 5

& 0& 0& 1& |& 5

& 1& 0& 0& | -1

& 0& 1& 0& | -5

& 0& 0& 1& |& 5

So, solution is (-1,-5,5).

Need a fast expert's response?

Submit orderand get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

## Comments

## Leave a comment