55 777
Assignments Done
97,2%
Successfully Done
In December 2017
Your physics homework can be a real challenge, and the due date can be really close — feel free to use our assistance and get the desired result.
Be sure that math assignments completed by our experts will be error-free and done according to your instructions specified in the submitted order form.
Our experts will gladly share their knowledge and help you with programming homework. Keep up with the world’s newest programming trends.

Answer on Linear Algebra Question for juili

Question #2576
B=(x2+x, x2-2, x2+2x-1) is a subset of the vector space P2 of polynomials of degree no larger than two,T(x2+x) =(1,-2) T(x2-2) = (4,1)& & T(x2+2x-1) = (2,-1)what is matrix representation for T with respect to the bases B for P2 and S=(1,0)(0,1) for R2?
With T given as in the above question, calculate T(7x2+3x-2).
Expert's answer
The matrix of T is

<img src="/cgi-bin/mimetex.cgi?%5Cleft%20%28%20%5Cbegin%7Bmatrix%7D%201%20&%204%20&%202%5C%5C%20-2%20&%201%20&%20-1%20%5Cend%7Bmatrix%7D%20%5Cright%20%29" title="\left ( \begin{matrix} 1 & 4 & 2\\ -2 & 1 & -1 \end{matrix} \right )">

Notice P2 has the following standard basis S = (x^2, x, 1).

Hence with respect to S the elements of B have the following coordinates:

(1,1,0), (1,0,-2), (1,2,-1).


We have to find the image of the vector V=(7,3,-2) (these coordinates are given in standard basis) under T.
For this we have to express vector V through basis B.

It can be calculated (manually or with some software) that the inverse matrix to

<img src="http://latex.codecogs.com/gif.latex?A%20=%5Cleft%20%28%20%5Cbegin%7Bmatrix%7D%201%20&%201%20&%201%5C%5C%201%20&%200%20&%202%5C%5C%200%20&%20-2%20&%20-1%20%5Cend%7Bmatrix%7D%20%5Cright%20%29" title="A =\left ( \begin{matrix} 1 & 1 & 1\\ 1 & 0 & 2\\ 0 & -2 & -1 \end{matrix} \right )">
is
<img src="http://latex.codecogs.com/gif.latex?A%5E%7B-1%7D%20=%5Cfrac%7B1%7D%7B3%7D%20%5Cleft%20%28%20%5Cbegin%7Bmatrix%7D%204%20&%20-1%20&%202%5C%5C%201%20&%20-1%20&%20-1%5C%5C%20-2%20&%202%20&%20-1%20%5Cend%7Bmatrix%7D%20%5Cright%20%29" title="A^{-1} =\frac{1}{3} \left ( \begin{matrix} 4 & -1 & 2\\ 1 & -1 & -1\\ -2 & 2 & -1 \end{matrix} \right )">
Then matrix of T is base S is
<img src="http://latex.codecogs.com/gif.latex?TA%5E%7B-1%7D%20=%5Cleft%20%28%20%5Cbegin%7Bmatrix%7D%0A1%20&%204%20&%202%5C%5C%20%0A-2%20&%201%20&%20-1%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%20%29%20%5Ctimes%20%5Cfrac%7B1%7D%7B3%7D%20%5Cleft%20%28%20%5Cbegin%7Bmatrix%7D%0A4%20&%20-1%20&%202%5C%5C%20%0A1%20&%20-1%20&%20-1%5C%5C%0A-2%20&%202%20&%20-1%20%0A%5Cend%7Bmatrix%7D%20%5Cright%20%29%20=%20%5C%5C%0A=%20%5Cfrac%7B1%7D%7B3%7D%20%5Cleft%20%28%20%5Cbegin%7Bmatrix%7D%0A4%20&%20-1%20&%20-4%5C%5C%20%0A-5%20&%20-1%20&%20-4%5C%5C%0A%5Cend%7Bmatrix%7D%20%5Cright%20%29" title="TA^{-1} =\left ( \begin{matrix}
1 & 4 & 2\\
-2 & 1 & -1\\
\end{matrix} \right ) \times \frac{1}{3} \left ( \begin{matrix}
4 & -1 & 2\\
1 & -1 & -1\\
-2 & 2 & -1
\end{matrix} \right ) = \\
= \frac{1}{3} \left ( \begin{matrix}
4 & -1 & -4\\
-5 & -1 & -4\\
\end{matrix} \right )">

Therefore
lt;img src="http://latex.codecogs.com/gif.latex?T%28V%29%20=%20%5Cfrac%7B1%7D%7B3%7D%20%5Cleft%20%28%20%5Cbegin%7Bmatrix%7D%204%20&%20-1%20&%20-4%5C%5C%20-5%20&%20-1%20&%20-4%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%20%29%5Cleft%20%28%20%5Cbegin%7Bmatrix%7D%207%20%5C%5C%203%5C%5C%20-2%20%5Cend%7Bmatrix%7D%20%5Cright%20%29%20=%20%5Cleft%20%28%20%5Cbegin%7Bmatrix%7D%2011%20%5C%5C%2010%20%5Cend%7Bmatrix%7D%20%5Cright%20%29" title="T(V) = \frac{1}{3} \left ( \begin{matrix} 4 & -1 & -4\\ -5 & -1 & -4\\ \end{matrix} \right )\left ( \begin{matrix} 7 \\ 3\\ -2 \end{matrix} \right ) = \left ( \begin{matrix} 11 \\ 10 \end{matrix} \right )">

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be first!

Leave a comment

Ask Your question