90 388
Assignments Done
98.9%
Successfully Done
In September 2020

# Answer to Question #24834 in Linear Algebra for Matthew Lind

Question #24834
Associated with each equation (Ax)_i=b_i in the system Ax=b there is a hyperplane H_i defined to be the subset of J-dimensional column vectors given by:

H_i = {x|(Ax)_i=b_i}.

Show that the ith column of A^(conjugate transpose) is normal to the hyperplane H_i; that is, it is orthogonal to every vector lying in H_i.
1
Expert's answer
2013-02-27T06:58:27-0500
If vector v is normal to H_i = {x|(Ax)_i=b_i} iff it is normal to H ={x|(Ax)_i=0}. But normality followsfrom a_i1 * x1 + ... + a_in * xn = 0, if we take conjugate (a_i1)&#039; * (x1)&#039; +
... + (a_in)&#039; * (xn)&#039; = 0&#039;=0
Last formula means that column ((a_i1)&#039;, ... , (a_in)&#039;) orthogonal to (x1, ...
,xn), that was necessary.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

#### Comments

No comments. Be first!

### Ask Your question

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS