Answer to Question #24834 in Linear Algebra for Matthew Lind

Question #24834
Associated with each equation (Ax)_i=b_i in the system Ax=b there is a hyperplane H_i defined to be the subset of J-dimensional column vectors given by: H_i = {x|(Ax)_i=b_i}. Show that the ith column of A^(conjugate transpose) is normal to the hyperplane H_i; that is, it is orthogonal to every vector lying in H_i.
Expert's answer
If vector v is normal to H_i = {x|(Ax)_i=b_i} iff it is normal to H ={x|(Ax)_i=0}. But normality followsfrom a_i1 * x1 + ... + a_in * xn = 0, if we take conjugate (a_i1)' * (x1)' +
... + (a_in)' * (xn)' = 0'=0
Last formula means that column ((a_i1)', ... , (a_in)') orthogonal to (x1, ...
,xn), that was necessary.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!


No comments. Be first!

Leave a comment

Ask Your question

New on Blog