Question #238042

1.    Given the utility function of the form: U (x, y) = 4x2 + 3xy + 6y2: maximize utility subject to the budget constraint: x + y = 56. Then find the utility maximizing level of output x and y?


1
Expert's answer
2021-09-23T09:14:30-0400

U(x,y)=4x2+3xy+6y2U(x,y) = 4x^2 +3xy+6y^2

Budget line

56=x+yP(x)=1P(y)=156 = x+y \\ P(x)=1 \\ P(y) = 1

At optimum : MU(x)P(x)=MU(y)P(y)\frac{MU(x)}{P(x)}= \frac{MU(y)}{P(y)}

MU(x)=ΔUΔx=8x+3yMU(y)=ΔUΔy=3x+12y8x+3y1=3x+12y18x+3y=3x+12y5x=9yx=95y=1.8yMU(x) = \frac{ΔU}{Δx} = 8x+3y \\ MU(y) = \frac{ΔU}{Δy} = 3x+12y \\ \frac{8x+3y}{1} = \frac{3x+12y}{1} \\ 8x+3y=3x+12y \\ 5x=9y \\ x= \frac{9}{5}y = 1.8 y

Putting x=1.8y in budget line

56=1.8y+y56=2.8yy=562.8=20x=36U(x,y)max=4×362+3×36×20+6×202=5184+2160+2400=974456 = 1.8y+y \\ 56 = 2.8y \\ y = \frac{56}{2.8} = 20 \\ x= 36 \\ U(x,y)_{max} = 4 \times 36^2 + 3 \times 36 \times 20 + 6 \times 20^2 \\ = 5184 + 2160 + 2400 = 9744


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS