Sample: Linear Algebra - Transformations

16)

(a)

Let f_{1}, f_{2} be continuous real-valued functions on $[0,1]$. Then linear combination

$$
c_{1} f_{1}+c_{2} f_{2}
$$

is also continuous real-valued function on $[0,1]$. So V is the linear subspace of $\mathfrak{F}([0,1])$.
(b)

Let $f_{1}, f_{2} \in W$. Then

$$
\begin{aligned}
& \int_{0}^{1} f_{1}(t) d t=0 \\
& \int_{0}^{1} f_{2}(t) d t=0
\end{aligned}
$$

Then

$$
\int_{0}^{1} c_{1} f_{1}(t)+c_{2} f_{2}(t) d t=c_{1} \int_{0}^{1} f_{1}(t) d t+c_{2} \int_{0}^{1} f_{2}(t) d t=0
$$

Thus

$$
c_{1} f_{1}+c_{2} f_{2} \in W
$$

So W is a subspace of V.

17)

$f(x)$ is the polynomial of degree n . Thus $f^{\prime}(x)$ is a polynomial f degree $n-1$, $f^{\prime \prime}(x)$ is a polynomial of degree $n-2, \ldots, f^{(k)}(x)$ is a polynomial of degree $n-$ $k, f^{(n)}(x)$ is a constant.. Since all polynomials $f, f^{\prime}, \ldots, f^{(n)}$ have different degree, they are linearly independent. Since they have consecutive degrees starting from 0 ,
$\left\{f, f^{\prime}, \ldots, f^{(n)}\right\}$ form a basis of $P_{n}(\mathbb{R})$. So for every $g(x) \in P_{n}(\mathbb{R})$ exists c_{1}, \ldots, c_{n} such that

$$
g(x)=c_{1} f(x)+c_{2} f^{\prime}(x)+\cdots+c_{n} f^{(n)}(x)
$$

18)

a) Is not linear transformation
b) Is not linear transformation
c) Is not linear transformation
d) It is linear transformation. Matrix:

$$
\left(\begin{array}{cc}
1 & 0 \\
1 & 0 \\
0 & 1 \\
1 & \pi^{2}
\end{array}\right)
$$

e) Is not linear transformation

19)

Suppose vectors $x_{1}, \ldots, x_{r}, v_{1}, \ldots, v_{s}$ are not linearly independent. Then there exists their non-trivial linear combination that equals to 0 :

$$
c_{1} x_{1}+\cdots+c_{r} x_{r}+d_{1} v_{1}+\cdots+d_{s} v_{s}=0
$$

Since x_{i} are independent this linear combination contains at least one none-zero term d_{i}.

Let's apply operator T to this equality.

$$
T\left(c_{1} x_{1}+\cdots+c_{r} x_{r}+d_{1} v_{1}+\cdots+d_{s} v_{s}\right)=T(0)
$$

Since T is linear we have:

$$
c_{1} T\left(x_{1}\right)+\cdots+c_{r} T\left(x_{r}\right)+d_{1} T\left(v_{1}\right)+\cdots+d_{s} T\left(v_{s}\right)=0
$$

Since $x_{1}, \ldots, x_{r} \in N(T)$

$$
T\left(x_{i}\right)=0
$$

So

$$
d_{1} T\left(v_{1}\right)+\cdots+d_{s} T\left(v_{s}\right)=0
$$

We got non-trivial linear combination of vectors $T\left(v_{i}\right)$ that equals to 0 . This contradicts to independence of vectors $\left\{T\left(v_{i}\right)\right\}$.

So vectors $x_{1}, \ldots, x_{r}, v_{1}, \ldots, v_{s}$ are linearly independent.
20)

Let

$$
T(v)=T\left(\left(v_{1}, v_{2}, v_{3}\right)\right)=\left(0, v_{1}, v_{2}\right)
$$

T is linear transformation with matrix

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Then

$$
T\left(T\left(T\left(\left(v_{1}, v_{2}, v_{3}\right)\right)\right)\right)=T\left(T\left(\left(0, v_{1}, v_{2}\right)\right)\right)=T\left(\left(0,0, v_{1}\right)\right)=(0,0,0)=0
$$

So we have $T(T(T(v)))=0$ for all $v \in \mathbb{R}^{3}$. But

$$
T(T((1,1,1)))=T((0,1,1))=(0,0,1) \neq 0
$$

21)

$$
A_{i j}=y_{i} x_{j}
$$

Matrix A has rows that are multiples of $\left(x_{1}, \ldots, x_{n}\right)$ with coefficients y_{1}, \ldots, y_{m}. Thus rank of matrix A equals to 1 . Nullity of L_{A} equals to $n-1$.

22)

Kernel of operator T is a plane. Equation of the kernel:

$$
9 x-9 y+z=0
$$

Let's take

$$
T=\left(\begin{array}{ccc}
9 & -9 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Kernel of T equals to

$$
\operatorname{span}\left(\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
9
\end{array}\right)\right\}\right)
$$

23)

(a)

$$
T(f)=(x+1) f^{\prime}+f
$$

Let's check whether operator is linear:

$$
\begin{aligned}
& T\left(c_{1} f_{1}+c_{2} f_{2}\right)=(x+1)\left(c_{1} f_{1}+c_{2} f_{2}\right)^{\prime}+\left(c_{1} f_{1}+c_{2} f_{2}\right) \\
& =c_{1}\left((x+1) f_{1}^{\prime}+f_{1}\right)+c_{2}\left((x+1) f_{2}^{\prime}+f_{2}\right)=c_{1} T\left(f_{1}\right)+c_{2} T\left(f_{2}\right)
\end{aligned}
$$

So T is linear.
(b)

Let's find explicit action of T on polynomials:

$$
T\left(c_{0}+c_{1} x\right)=(x+1) c_{1}+c_{0}+c_{1} x=c_{0}+c_{1}+2 c_{1} x
$$

Matrix representation of T :

$$
T=\left(\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right)
$$

24)

Matrix representation of T :

$$
T=\begin{gathered}
\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & 0 & 0 \\
0 & 0 & 0 & \ldots & 0 & 1 \\
0 & 0 & 0 & \ldots & 0 & 0
\end{array}\right)
\end{gathered}
$$

Nullity of the operator:

$$
v_{2}=v_{3}=\cdots=v_{n}=0
$$

So

$$
\left.\left.\begin{array}{c}
\left.\left.N(T)=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
0 \\
0 \\
\ldots \\
0
\end{array}\right)\right\}\right)\right\} \\
T^{k}\left(v_{1}, \ldots, v_{n}\right)=\left(v_{1+k}, v_{2+k}, \ldots, v_{n}, 0,0, \ldots, 0\right) \\
N\left(T^{k}\right)=\operatorname{span}\left\{\left(\begin{array}{c}
1 \\
0 \\
0 \\
\ldots \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
0 \\
\ldots \\
0
\end{array}\right), \ldots,\left(\begin{array}{c}
0 \\
\ldots \\
\ldots \\
0
\end{array}\right)\right.
\end{array}\right\}\right)
$$

