## Sample: Matrix Tensor Analysis - Statements with Matrices

- Let $A=\left[\begin{array}{lll}1 & \alpha & \alpha \\ \alpha & 2 & 1 \\ \alpha & \alpha & 1\end{array}\right]$.
a. For which numbers $\alpha$ will $A$ be singular?
$b$. For all numbers $\alpha$ not on your list in part $a$, we can solve $A \boldsymbol{x}=\boldsymbol{b}$ for every vector $b \in R^{3}$. For each of the numbers $\alpha$ on your list, give the vectors $\boldsymbol{b}$ for which we can solve $A \boldsymbol{x}=\boldsymbol{b}$.


## Solution.

a. A matrix is singular if and only if its determinant is 0 . Thus, find values of $\alpha$ for that $\operatorname{det}(A)=0$.
$\operatorname{det}(A)=\left|\begin{array}{lll}1 & \alpha & \alpha \\ \alpha & 2 & 1 \\ \alpha & \alpha & 1\end{array}\right|=$
$=1 * 2 * 1+\alpha * \alpha * 1+\alpha * \alpha * \alpha-\alpha * 2 * \alpha-1 * 1 * \alpha-\alpha * \alpha * 1=$
$=2+\alpha^{2}+\alpha^{3}-2 \alpha^{2}-\alpha-\alpha^{2}=$
$=\alpha^{3}-2 \alpha^{2}-\alpha+2=0$
Solve the equation above:

$$
\begin{gathered}
\alpha^{3}-2 \alpha^{2}-\alpha+2=0 \\
\alpha^{2}(\alpha-2)-(\alpha-2)=0 \\
(\alpha-1)(\alpha+1)(\alpha-2)=0 \\
\alpha=-1,1,2
\end{gathered}
$$

b. For $\alpha=-1$ we get:

$$
A=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 2 & 1 \\
-1 & -1 & 1
\end{array}\right]
$$

Form the augmented matrix $[\mathrm{A} \mid \mathrm{b}]$ and put it in echelon form:

$$
\begin{aligned}
\left(\begin{array}{ccc|c}
1 & -1 & -1 & b 1 \\
-1 & 2 & 1 & b 2 \\
-1 & -1 & 1 & b 3
\end{array}\right) & \left.\rightarrow\left(\begin{array}{ccc|c}
1 & -1 & -1 & b 1 \\
0 & 1 & 0 & b 2+b 1 \\
0 & -2 & 0 & b 3+b 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \begin{array}{c}
b 3+b 1+2(b 2+b 1)
\end{array}\right) \\
& =\left(\begin{array}{ccc|c}
1 & -1 & -1 & b 1 \\
0 & 1 & 0 & b 2+b 1 \\
0 & 0 & 0 & b 3+2 b 2+3 b 1
\end{array}\right)
\end{aligned}
$$

We can see the system has a solution if and only if

$$
b 3+2 b 2+3 b 1=0
$$

Or:

$$
b 3=-2 b 2-3 b 1
$$

Thus:

$$
b=\left(\begin{array}{c}
b 1 \\
b 2 \\
-2 b 2-3 b 1
\end{array}\right)
$$

The corresponding normal vector is:

$$
b=\left(\begin{array}{c}
1 \\
1 \\
-5
\end{array}\right)
$$

For $\alpha=1$ we get:

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Form the augmented matrix $[\mathrm{A} \mid \mathrm{b}]$ and put it in echelon form:

$$
\left(\begin{array}{ccc|c}
1 & 1 & 1 & b 1 \\
1 & 2 & 1 & b 2 \\
1 & 1 & 1 & b 3
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & -1 & -1 & b 1 \\
0 & 1 & 0 & b 2-b 1 \\
0 & 0 & 0 & b 3-b 1
\end{array}\right)
$$

We can see the system has a solution if and only if

$$
b 3-b 1=0
$$

Or:

$$
b 3=b 1
$$

Thus:

$$
b=\left(\begin{array}{l}
b 1 \\
b 2 \\
b 1
\end{array}\right)
$$

The corresponding normal vector is:

$$
b=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

For $\alpha=2$ we get:

$$
A=\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 2 & 1 \\
2 & 2 & 1
\end{array}\right]
$$

Form the augmented matrix $[\mathrm{A} \mid \mathrm{b}]$ and put it in echelon form:

$$
\left(\begin{array}{ccc|c}
1 & 2 & 2 & b 1 \\
2 & 2 & 1 & b 2 \\
2 & 2 & 1 & b 3
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 2 & 2 & b 1 \\
2 & 2 & 1 & b 2 \\
0 & 0 & 0 & b 3-b 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
1 & 2 & 2 & b 1 \\
0 & -2 & -3 & b 2-2 b 1 \\
0 & 0 & 0 & b 3-b 2
\end{array}\right)
$$

We can see the system has a solution if and only if

$$
b 3-b 2=0
$$

Or:

$$
b 3=b 2
$$

Thus:

$$
b=\left(\begin{array}{l}
b 1 \\
b 2 \\
b 2
\end{array}\right)
$$

The corresponding normal vector is:

$$
b=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

- Suppose $A$ is an $m \times n$ matrix with rank $m$ and $v_{1}, \ldots, v_{k} \in R^{n}$ are vectors with $\operatorname{Span}\left(v_{1}, \ldots, v_{k}\right)=R^{n}$. Prove that $\operatorname{Span}\left(A v_{1}, \ldots, A v_{k}\right)=R^{m}$.


## Solution.

$\operatorname{Rank}(A)=m$, thus A has m linearly independent columns. Also we know that $\operatorname{Span}\left(v_{1}, v_{2}, \ldots, v_{k}\right)=R^{n}$. Thus, a set ( $A v_{1}, A v_{2}, \ldots, A v_{k}$ ) contains $m$ linearly independent vectors.

Each of the products $A v_{i}$ is a vector of size $m$ (according to rules of matrix multiplication).

Thus, the set $\left(A v_{1}, A v_{2}, \ldots, A v_{k}\right)$ contains $m$ linearly independent vectors of size m . And it means that $\operatorname{Span}\left(A v_{1}, A v_{2}, \ldots, A v_{k}\right)=R^{m}$.

- Let $A$ be an $m \times n$ matrix with column vectors $a_{1}, \ldots, a_{n} \in R^{m}$.
a. Suppose $a_{1}+\cdots+a_{n}=0$. Prove that $\operatorname{rank}(A)<n$.
b. More generally, suppose there is some linear combination $c_{1} a_{1}+\cdots+c_{n} a_{n}=0$, where some $c_{i} \neq 0$. Prove that $\operatorname{rank}(A)<n$.


## Solution.

a. $\quad a_{1}+\cdots+a_{n}=0=>a_{n}=-a_{1}-a_{2}-\cdots-a_{n+1}$

We can see that the last column (at least one column) can be represented as a linear combination of other columns. Thus, number of linearly independent columns is less than n . That's why $\operatorname{rank}(A)<n$.
b. Similarly to part (a) we can see that:

$$
a_{n}=-\frac{c_{1}}{c_{n}} a_{1}-\frac{c_{2}}{c_{n}} a_{2}-\cdots-\frac{c_{n-1}}{c_{n}} a_{n-1}
$$

Now let

$$
c_{1}^{\prime}=-\frac{c_{1}}{c_{n}}, \ldots, c_{n-1}^{\prime}=-\frac{c_{n-1}}{c_{n}}
$$

We can see that the last column (at least one column) is represented as a linear combination of other columns:

$$
a_{n}=c_{1}^{\prime} a_{1}+\cdots+c_{n-1}^{\prime} a_{n-1}
$$

Thus, number of linearly independent columns is less than n . That's why $\operatorname{rank}(A)<n$.

- Prove or give counterexample. Assume all the matrices are $n \times n$.
a. If $A B=C B$ and $B \neq 0$, then $A=C$.
b. If $A^{2}=A$ then $A \neq 0$ or $A=I$.
c. $(A+B)(A-B)=A^{2}-B^{2}$.
d. If $A B=C B$ and $B$ is nonsingular, then $A=C$.
e. If $A B=B C$ and $B$ is nonsingular, then $A=C$.


## Solution.

a. $A B=C B=>A B-C B=0=>(A-C) B=0$.

$$
B \neq 0=>A-C=0=>A=C
$$

b. The counterexample is:

$$
A=\left(\begin{array}{cc}
-1 & -2 \\
1 & 2
\end{array}\right)
$$

c. The counterexample is:

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

d. $A B=C B=>A B-C B=0=>(A-C) B=0$

$$
B \text { is nonsingular }=>B \neq 0=>A-C=0=>A=C
$$

e. The counterexample is:

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), B=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

- Find all $2 \times 2$ matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ satisfying
a. $A^{2}=I_{2}$
b. $\quad A^{2}=0$
c. $A^{2}=-I_{2}$


## Solution.

a. $\quad A^{2}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) *\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right)=I_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

We get the system of equations:

$$
\left\{\begin{array}{l}
a^{2}+b c=1 \\
a b+b d=0 \\
a c+c d=0 \\
b c+d^{2}=1
\end{array}\right.
$$

It is clear that $A=I_{2}$ is a solution of equation $A^{2}=I_{2}$. Now, look for other solutions. Assume $b, c \neq 0$. Thus:

$$
\left\{\begin{array}{l}
a^{2}+b c=1 \\
a b+b d=0 \\
a c+c d=0 \\
b c+d^{2}=1
\end{array}=>\left\{\begin{array}{c}
b c=1-a^{2} \\
a+d=0 \\
a+d=0 \\
b c=1-d^{2}
\end{array}=>\left\{\begin{array}{c}
a=-d \\
b=\frac{1-d^{2}}{c}
\end{array}\right.\right.\right.
$$

So, $A=I_{2}$ and each matrix

$$
A=\left(\begin{array}{cc}
-d & \frac{1-d^{2}}{c} \\
c & d
\end{array}\right)
$$

for every d and $c \neq 0$ are solutions of the equation $A^{2}=I_{2}$.
b. Similarly to the part (a) we get a system of equations:

$$
\left\{\begin{array}{l}
a^{2}+b c=0 \\
a b+b d=0 \\
a c+c d=0 \\
b c+d^{2}=0
\end{array}\right.
$$

For $b=0$ we get:

$$
\left\{\begin{array}{l}
a^{2}=0 \\
0=0 \\
c * 0=0 \\
d^{2}=0
\end{array}=>a, d=0,\right. \text { c can be any }
$$

So, $A=\left(\begin{array}{ll}0 & 0 \\ C & 0\end{array}\right)$ is a solution.
For $\mathrm{b}=0$ we get:

$$
\left\{\begin{array}{l}
a^{2}=0 \\
b * 0=0 \\
0=0 \\
d^{2}=0
\end{array}=>a, d=0, b\right. \text { can be any }
$$

So, $A=\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)$ is a solution too.
For $b, c \neq 0$ :

$$
\left\{\begin{array}{l}
a^{2}+b c=0 \\
a b+b d=0 \\
a c+c d=0 \\
b c+d^{2}=0
\end{array}=>\left\{\begin{array}{l}
b c=-a^{2} \\
a+d=0 \\
a+d=0 \\
b c=-d^{2}
\end{array}=>\left\{\begin{array}{l}
a=-d \\
b=\frac{-d^{2}}{c}
\end{array}\right.\right.\right.
$$

So, $A=\left(\begin{array}{cc}-d & \frac{-d^{2}}{c} \\ c & d\end{array}\right)$ is also a solution if $c, d \neq 0$.
c. $\quad A^{2}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) *\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{ll}a^{2}+b c & a b+b d \\ a c+c d & b c+d^{2}\end{array}\right)=I_{2}=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$

We get the system of equations:

$$
\left\{\begin{array}{c}
a^{2}+b c=-1 \\
a b+b d=0 \\
a c+c d=0 \\
b c+d^{2}=-1
\end{array}\right.
$$

For $\mathrm{b}=0$ or $\mathrm{c}=0$ :

$$
\left\{\begin{array}{c}
a^{2}=-1 \\
0=0 \\
a c+c d=0 \\
d^{2}=-1
\end{array}\right.
$$

It is clear that there is no solution.
Assume $b, c \neq 0$. Thus:

$$
\left\{\begin{array}{c}
a^{2}+b c=-1 \\
a b+b d=0 \\
a c+c d=0 \\
b c+d^{2}=-1
\end{array}=>\left\{\begin{array}{c}
b c=-1-a^{2} \\
a+d=0 \\
a+d=0 \\
b c=-1-d^{2}
\end{array}=>\left\{\begin{array}{c}
a=-d \\
b=\frac{-1-d^{2}}{c}
\end{array}\right.\right.\right.
$$

So each matrix

$$
A=\left(\begin{array}{cc}
-d & \frac{-1-d^{2}}{c} \\
c & d
\end{array}\right)
$$

for every d and $c \neq 0$ are solutions of the equation $A^{2}=I_{2}$.

