Sample: Physics - Mechanical Problems

Problem 6.3

A baseball player slides into third base with an initial speed of $4.4 \mathrm{~m} / \mathrm{s}$.

Part A

If the coefficient of kinetic friction between the player and the ground is 0.48 , how far does the player slide before coming to rest?

Express your answer using two significant figures.

Solution:

Given:
$v_{i}=4.4 \mathrm{~m} / \mathrm{s}$,
$v_{f}=0$ (final speed)
$\mu=0.48$,
$d=\Delta x=$?

The equation of motion is

$$
-F=m a
$$

The force of kinetic friction is given by

$$
F=\mu N
$$

where μ is coefficient of kinetic friction, and N is the normal force that presses the sliding object to the surface.

If the object is sliding on a level surface, $\mathrm{N}=\mathrm{mg}$, where g is the gravity acceleration constant ($9.81 \mathrm{~m} / \mathrm{s}^{2}$).
Thus,

$$
\begin{gathered}
-\mu m g=m a \\
a=-\mu g
\end{gathered}
$$

The distance is

$$
d=\frac{v_{f}^{2}-v_{i}^{2}}{2 a}=\frac{v_{f}^{2}-v_{i}^{2}}{-2 \mu g}=\frac{-4.4^{2}}{-2 \cdot 0.48 \cdot 9.81}=2.06=2.1 \mathrm{~m}
$$

Answer. $\Delta x=2.1 \mathrm{~m}$.

Problem 6.12

IP A 45-kg crate is placed on an inclined ramp.
When the angle the ramp makes with the
horizontal is increased to 27°, the crate begins to slide downward.

Part A

What is the coefficient of static friction between the crate and the ramp?
Express your answer using two significant figures.

Solution:

Given:
$m=45 \mathrm{~kg}$,
$\theta=27^{\circ}$,
$\mu_{s}=$?,

The coefficient of static friction looks like

$$
\mu_{s}=\frac{F_{\text {smax }}}{N}
$$

The maximum force of static friction is used because static friction has a whole range from zero newtons up to the maximum force of static friction.

The friction force is

$$
F_{\text {smax }}=m g \sin \theta
$$

The normal force N is

$$
N=m g \cos \theta
$$

Thus,

$$
\begin{gathered}
\mu_{s}=\frac{F_{s m a x}}{N}=\frac{m g \sin \theta}{m g \cos \theta}=\tan \theta \\
\mu_{s}=\tan 27^{\circ}=0.51
\end{gathered}
$$

Answer. $\mu_{s}=0.51$

Part B

At what angle does the crate begin to slide if its mass is doubled?
Express your answer using two significant figures.

Solution:

The coefficient of static friction does not depend on the object's mass.

$$
\mu_{s}=\tan \theta
$$

Thus,

$$
\theta^{\prime}=\tan ^{-1} \mu_{s}=\tan ^{-1} 0.51=27^{\circ}
$$

Answer. $\theta^{\prime}=27^{\circ}$.

Problem 6.14

A person places a cup of coffee on the roof of her car while she dashes back into the house for a forgotten item. When she returns to the car, she hops in and takes off with the coffee cup still on the roof.

Part A

If the coefficient of static friction between the coffee cup and the roof of the car is 0.24 , what is the maximum acceleration the car can have without causing the cup to slide? Ignore the effects of air resistance.

Express your answer using two significant figures.

Solution:

Given:

$$
\begin{aligned}
& \mu_{s}=0.24 \\
& a=?
\end{aligned}
$$

The coefficient of static friction is

$$
\mu_{s}=\frac{F_{s \max }}{N}
$$

The force is

$$
F_{\text {smax }}=m a
$$

If the object is sliding on a level surface, $N=m g$, where g is the gravity acceleration constant ($9.81 \mathrm{~m} / \mathrm{s}^{2}$).

Thus,

$$
m a=\mu_{s} m g
$$

The acceleration is

$$
a=\mu_{s} g=0.24 \cdot 9.81=2.354=2.4 \mathrm{~m} / \mathrm{s}^{2}
$$

Answer. $a=2.4 \mathrm{~m} / \mathrm{s}^{2}$.

Part B

What is the smallest amount of time in which the person can accelerate the car from rest to $14 \mathrm{~m} / \mathrm{s}$ and still keep the coffee cup on the roof?

Express your answer using two significant figures.

Solution:

Given:
$v_{i}=0 \mathrm{~m} / \mathrm{s}$, (initial speed)
$v_{f}=14$ (final speed),
$a=2.4 \mathrm{~m} / \mathrm{s}^{2}$,
$t=$?

The time is

$$
t=\frac{v_{f}-v_{i}}{a}=\frac{14-0}{2.4}=5.8 \mathrm{~s}
$$

Answer. $t=5.8 \mathrm{~s}$

