Sample: Statistics and Probability - Jointly Continuous Random Variables

Question 1

Let X and Y be jointly continuous random variables with joint density function

$$
f(x, y)=c\left(y^{2}-x^{2}\right) e^{-y}, \quad-y \leq x \leq y, \quad 0<y<\infty .
$$

a) Find c so that f is a density function.
b) Find the marginal densities of X and Y.
c) Find the expected value of X.

Solution.

(a) If f is a true density function the following must be true:

$$
\int_{D} f(x, y)=1
$$

Where D is domain of the function.
In our case the equality looks:

$$
\int_{0}^{\infty} \int_{-y}^{y} c\left(y^{2}-x^{2}\right) e^{-y} d x d y=1
$$

Solve the equation (use integration by parts) to get c :

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{-y}^{y} c\left(y^{2}-x^{2}\right) e^{-y} d x d y=c \int_{0}^{\infty} e^{-y} \int_{-y}^{y}\left(y^{2}-x^{2}\right) d x d y=c \int_{0}^{\infty} e^{-y} *\left(y^{2} x-\frac{x^{3}}{3}\right)_{-y}^{y} d y \\
& =c \int_{0}^{\infty} e^{-y}\left(y^{2} * y-\frac{y^{3}}{3}-y^{2} *(-y)+\frac{(-y)^{3}}{3}\right) d y=c \int_{0}^{\infty} e^{-y}\left(\frac{4}{3} y^{3}\right) d y \\
& =\frac{4}{3} c \int_{0}^{\infty} y^{3} e^{-y} d y=\left|\begin{array}{c}
\text { let } u=y^{3}, d v=e^{-y} d y \\
=>d u=3 y^{2} d y, v=-e^{-y}
\end{array}\right| \\
& =\frac{4}{3} c\left(\left(-y^{3} e^{-y}\right)_{0}^{\infty}+3 \int_{0}^{\infty} y^{2} e^{-y} d y\right)=\left|\begin{array}{c}
\text { let } u=y^{2}, d v=e^{-y} d y \\
=>d u=2 y d y, v=-e^{-y}
\end{array}\right| \\
& =\frac{4}{3} c\left(\left(-y^{3} e^{-y}\right)_{0}^{\infty}+3\left(-y^{2} e^{-y}\right)_{0}^{\infty}+3 * 2 \int_{0}^{\infty} y e^{-y} d y\right) \\
& =\left|\begin{array}{l}
\text { let } u=y, d v=e^{-y} d y \\
=>d u=d y, v=-e^{-y}
\end{array}\right| \\
& =\frac{4}{3} c\left(\left(-y^{3} e^{-y}\right)_{0}^{\infty}+3\left(-y^{2} e^{-y}\right)_{0}^{\infty}+6\left(-y e^{-y}\right)_{0}^{\infty}+6 \int_{0}^{\infty} e^{-y} d y\right)= \\
& =\frac{4}{3} c\left(-y^{3} e^{-y}-3 y^{2} e^{-y}-6 y e^{-y}-6 e^{-y}\right)_{0}^{\infty} \\
& =\frac{4}{3} c(0+0+0+0-0-0-0-(-6))=8 c=1
\end{aligned}
$$

Thus, the solution is:

$$
c=\frac{1}{8}
$$

(b)

$$
\begin{aligned}
& f_{X}(x)=\int_{Y} f(x, y) d y=\int_{0}^{\infty} c\left(y^{2}-x^{2}\right) e^{-y} d y=\frac{1}{8} \int_{0}^{\infty}\left(y^{2}-x^{2}\right) e^{-y} d y \\
&=\left|\begin{array}{c}
\text { let } u=y^{2}-x^{2}, d v=e^{-y} d y \\
=>d u=2 y d y, v=-e^{-y}
\end{array}\right|=\frac{1}{8}\left(\left(-\left(y^{2}-x^{2}\right) e^{-y}\right)_{0}^{\infty}+2 \int_{0}^{\infty} y e^{-y} d y\right) \\
&=\left|\begin{array}{c}
\text { let } u=y, d v=e^{-y} d y \\
=>d u=d y, v=-e^{-y}
\end{array}\right| \\
&=\frac{1}{8}\left(\left(-\left(y^{2}-x^{2}\right) e^{-y}\right)_{0}^{\infty}+2\left(-y e^{-y}\right)_{0}^{\infty}+2 \int_{0}^{\infty} e^{-y} d y\right) \\
&=\frac{1}{8}\left(-\left(y^{2}-x^{2}\right) e^{-y}-2 y e^{-y}-2 e^{-y}\right)_{0}^{\infty} \\
&=\frac{1}{8}\left(0+0+0+\left(0+x^{2}\right) * 1+0+2 * 1\right)=\frac{x^{2}+2}{8},-y \leq x \leq y
\end{aligned}
$$

$$
f_{Y}(y)=\int_{X} f(x, y) d x=\int_{-y}^{y} c\left(y^{2}-x^{2}\right) e^{-y} d x=\frac{1}{8} e^{-y} \int_{-y}^{y}\left(y^{2}-x^{2}\right) d x
$$

$$
=\frac{1}{8} e^{-y} *\left(y^{2} x-\frac{x^{3}}{3}\right)_{-y}^{y}=\frac{1}{8} e^{-y}\left(y^{2} * y-\frac{y^{3}}{3}-y^{2} *(-y)+\frac{(-y)^{3}}{3}\right)
$$

$$
=\frac{1}{8} e^{-y} * \frac{4}{3} y^{3}=\frac{y^{3} e^{-y}}{6}, y \geq 0
$$

(c)

$$
\begin{gathered}
E(X)=\int_{X} x f_{X}(x) d x=\int_{-y}^{y} x * \frac{x^{2}+2}{8} d x=\frac{1}{8} \int_{-y}^{y}\left(x^{3}+2 x\right) d x=\frac{1}{8}\left(\frac{x^{4}}{4}+x^{2}\right)_{-y}^{y} \\
=\frac{1}{8}\left(\frac{y^{4}}{4}+y^{2}-\frac{(-y)^{4}}{4}-(-y)^{2}\right)=0
\end{gathered}
$$

Question 2

Let X and Y be independent standard uniform random variables and let a, b and c be positive real numbers. Find the probability that $a X+b Y \leq c$.

Solution.

X and Y are uniformly distributed in the interval $[0,1]$. Thus, $a X$ and $b Y$ are uniformly distributed in the intervals $[0, a]$ and $[0, b]$ correspondently. Thus, the variable (X, Y) is uniformly distributed in the following rectangle:

The condition $a X+b Y \leq c$ corresponds to the following one:

$$
b Y \leq-a X+c
$$

Or, graphically, bY locates under the line $b Y=-a X+c$.
The corresponding probability equals to percentage of rectangle that locates under the line $\mathrm{bY}=$ $-a X+c$.

Consider the possible cases of relations between a, b and c and find the area in each case.
Case 1: $c \leq a$ and $c \leq b$

The area under the line equals to area of a right triangle with cathetus of length c:

$$
S 1=\frac{c^{2}}{2}
$$

Case 2: $b<c<a$

The area under the line equals to area of a right triangle with cathetus of length c minus area of a right triangle with cathetus of length (c-b):

$$
S 2=\frac{c^{2}-(c-b)^{2}}{2}=\frac{2 b c-b^{2}}{2}
$$

Case 3: $a<c<b$
The figure for this case will be symmetrical to case 2 figure. The corresponding formulas for area are the same too, just switch a and b :

$$
S 3=\frac{c^{2}-(c-a)^{2}}{2}=\frac{2 a c-a^{2}}{2}
$$

Case 4: $b<a<c \leq a+b$

The area under the line equals to area of a right triangle with cathetus of length c minus area of a right triangle with cathetus of length (c-b) and minus area of a right triangle with cathetus of length ($\mathrm{c}-\mathrm{a}$):

$$
S 4=\frac{c^{2}-(c-b)^{2}-(c-a)^{2}}{2}
$$

Case 5: $a<b<c \leq a+b$
The figure for this case will be symmetrical to case 4 figure. The corresponding formulas for area are the same too, just switch a and b :

$$
S 5=\frac{c^{2}-(c-a)^{2}-(c-b)^{2}}{2}
$$

Case 6: $c>a+b$

In this case the whole rectangle will locate under the line:

$$
S 6=a b
$$

Summarize the areas found to build one function:

$$
S=\left\{\begin{array}{c}
\frac{c^{2}}{2}, \text { if } c \leq a \text { and } c \leq b \\
\frac{c^{2}-(c-b)^{2}}{2}, \text { if } b<c \leq a \\
\frac{c^{2}-(c-a)^{2}}{2}, \text { if } a<c \leq b \\
\frac{c^{2}-(c-b)^{2}-(c-a)^{2}}{2}, \text { if } a<b<c \leq a+b \text { or } b<a<c \leq a+b \\
a b, \text { if } c>a+b
\end{array}\right.
$$

Combine and transform some of the cases to get more compact form:

$$
S=\left\{\begin{array}{cc}
\frac{c^{2}}{2}, & \text { if } c \leq \min (a, b) \\
\frac{c^{2}-(c-\min (a, b))^{2}}{2}, & \text { if } \min (a, b)<c \leq \max (a, b) \\
\frac{c^{2}-(c-b)^{2}-(c-a)^{2}}{2}, & \text { if } \max (a, b)<c \leq a+b \\
a b, & \text { if } c>a+b
\end{array}\right.
$$

Area of the rectangle:

$$
S_{f u l l}=a b
$$

Use the formulas for areas to find the probability for each case:

$$
P(a X+b Y \leq c)=\left\{\begin{array}{cl}
\frac{c^{2}}{2 a b}, & \text { if } c \leq \min (a, b) \\
\frac{c^{2}-(c-\min (a, b))^{2}}{2 a b}, & \text { if } \min (a, b)<c \leq \max (a, b) \\
\frac{c^{2}-(c-b)^{2}-(c-a)^{2}}{2 a b}, & \text { if } \max (a, b)<c \leq a+b \\
1, & \text { if } c>a+b
\end{array}\right.
$$

Question 3

Show that if X and Y are jointly continuous, then $X+Y$ is a continuous random variable while X, Y and $X+Y$ are not jointly continuous.

Solution.

If X and Y are jointly continuous random variables, there exists a continuous density function $f_{X Y}(x, y)$ such that

$$
P(X \leq s, Y \leq t)=\int_{x \leq s, y \leq t} f_{X Y}(x, y) d x d y
$$

Now, consider the random variable $X+Y$. Consider the following probability.

$$
P(X+Y \leq a)=\int_{s \leq a} P(X \leq s, Y \leq a-s) d s=\int_{s \leq a} \int_{x \leq s,} f_{X \leq a-s}(x, y) d x d y d s
$$

The function $f_{X Y}(x, y)$ is continuous in R^{2}. Thus, the integral above has a clear geometrical sense - volume of the curvilinear cone. Thus, the probability considered exists and is continuous for such X and Y. So, $X+Y$ is a continuous variable.

Now assume that X, Y and $X+Y$ are jointly continuous. In this case there must exist a function $f_{X Y, X+Y}(x, y, x+y)$ such that

$$
P j=P(X \leq s, Y \leq t, X+Y \leq a)=\int_{x \leq s, y \leq t, x+y \leq a} f_{X Y, X+Y}(x, y, x+y) d x d y
$$

When looking at the formula above we can understand that the conditions $x \leq s, y \leq t, \quad x+$ $y \leq a$ are not independent. There are "border" points where the final equation will change its shape.

For example, assume s and t increase from some point and tend to the line $s+t=a$. Below this line ($s+t=a-\epsilon$) the probability $P j$ will exist and will be non-zero in general case. But just above the line $(s+t=a+\epsilon$) we are sure to get $P j=0$, because if $s+t>a$ the events $x \leq$ $s, y \leq t, x+y \leq a$ will never occur simultaneously.

As we can see, $P j$ will have a "jump" in the set of points $s+t=a$. Thus, the probability is not continuous and so, X, Y and $X+Y$ are not jointly continuous.

