Sample: Calculus - Investigation of Functions

Sketch the functions:
i. $\quad f(x)=\frac{x}{x^{2}-9}$
ii. $\quad f(x)=2 x^{3}-3 x^{2}-12 x$.

Solution:

i. $\quad f(x)=\frac{x}{x^{2}-9}$.

1. Find the domain of function. Domain will be $(-\infty, \infty)$ except points where

$$
\begin{gathered}
x^{2}-9=0 \\
x_{1,2}= \pm 3
\end{gathered}
$$

So domain of function is $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$.
2. Find the $y-$ intercept by substituting $x=0$:

$$
f(x)=\frac{0}{0-9}=0
$$

So, the y - intercept is $(0,0)$.
Find the x - intercept by substituting $y=0$:

$$
\begin{gathered}
0=\frac{x}{x^{2}-9} \\
x=0
\end{gathered}
$$

So, the x - intercept is $(0,0)$.
3. Find any vertical asymptotes by investigating where the denominator is 0 :

$$
\begin{gathered}
x^{2}-9=0 \\
x_{1,2}= \pm 3
\end{gathered}
$$

So, the vertical asymptotes are: $x=-3$ and $x=3$.
Find any horizontal asymptotes by finding the limits as $x \rightarrow-\infty$ and $x \rightarrow \infty$

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \frac{x}{x^{2}-9}=0 \\
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{x}{x^{2}-9}=0
\end{aligned}
$$

So, the horizontal asymptote is $y=0$
4. Investigate symmetry

$$
f(-x)=\frac{-x}{(-x)^{2}-9}=-\frac{x}{x^{2}-9}=-f(x)
$$

So, function is odd and graph is symmetric about the origin.
5. Find $f^{\prime}(x)$.

$$
f^{\prime}(x)=\frac{x^{2}-9-x \cdot 2 x}{\left(x^{2}-9\right)^{2}}=-\frac{x^{2}+9}{\left(x^{2}-9\right)^{2}}
$$

Locate any critical points by solving the equation $f^{\prime}(x)=0$

$$
-\frac{x^{2}+9}{\left(x^{2}-9\right)^{2}}=0
$$

There aren't any x when $f^{\prime}(x)=0$, so there aren't any critical points.
Determine where $f(x)$ is increasing or decreasing:
As $f^{\prime}(x)<0$ for any x from domain, then function is decreasing on any x from domain: $(-\infty,-3) \cup(-3,3) \cup(3, \infty)$
6. Find $f^{\prime \prime}(x)$

$$
f^{\prime \prime}(x)=\frac{-2 x\left(x^{2}-9\right)^{2}+\left(x^{2}+9\right) \cdot 4 x\left(x^{2}-9\right)}{\left(x^{2}-9\right)^{4}}=\frac{2 x\left(x^{2}+27\right)}{\left(x^{2}-9\right)^{3}}
$$

Locate potential inflection points by solving the equation $f^{\prime \prime}(x)=0$

$$
\begin{gathered}
\frac{2 x\left(x^{2}+27\right)}{\left(x^{2}-9\right)^{3}}=0 \\
x=0
\end{gathered}
$$

Determine where $f(x)$ is concave upward or concave downward:
$f^{\prime \prime}(x)>0$, when $x \in(-3,0) \cup(3, \infty)$, so on this intervals function is concave upward
$f^{\prime \prime}(x)<0$, when $x \in(-\infty,-3) \cup(0,3)$, so on this intervals function is concave downward
7. Sketch the graph

ii. $\quad f(x)=2 x^{3}-3 x^{2}-12 x$

1. Find the domain of function. Domain will be $(-\infty, \infty)$.
2. Find the y - intercept by substituting $x=0$:
$f(x)=2 \cdot 0-3 \cdot 0-12 \cdot 0=0$.
So, the y - intercept is $(0,0)$.
Find the x - intercept by substituting $y=0$:

$$
\begin{gathered}
0=2 x^{3}-3 x^{2}-12 x \\
x\left(2 x^{2}-3 x-12\right)=0 \\
x_{1}=0 \\
x_{2}=\frac{1}{4}(3-\sqrt{105}) \approx-1.81 \\
x_{3}=\frac{1}{4}(3+\sqrt{105}) \approx 3.31
\end{gathered}
$$

So, the x - intercept are $(0,0),(-1.81,0),(3.31,0)$.
3. Find any vertical asymptotes by investigating where the denominator is 0 :

So, there aren't any vertical asymptotes.
Find any horizontal asymptotes by finding the limits as $x \rightarrow-\infty$ and $x \rightarrow \infty$

$$
\begin{gathered}
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} 2 x^{3}-3 x^{2}-12 x=-\infty \\
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} 2 x^{3}-3 x^{2}-12 x=\infty
\end{gathered}
$$

So, there aren't any horizontal asymptotes
4. Investigate symmetry

$$
f(-x)=2(-x)^{3}-3(-x)^{2}-12(-x)=-2 x^{3}-3 x^{2}+12 x \neq-f(x) \text { or } f(x)
$$

So, function is neither odd or even, and graph isn't symmetric about the origin or y - axis.
5. Find $f^{\prime}(x)$.

$$
f^{\prime}(x)=6 x^{2}-6 x-12
$$

Locate any critical points by solving the equation $f^{\prime}(x)=0$

$$
\begin{gathered}
6 x^{2}-6 x-12=0 \\
x_{1}=-1 \\
x_{2}=2
\end{gathered}
$$

So, there are 2 critical points $x=-1$ and $x=2$.

$$
\begin{gathered}
f(-1)=2 \cdot(-1)^{3}-3 \cdot(-1)^{2}-12 \cdot(-1)=-2-3+12=7 \\
f(2)=2 \cdot 2^{3}-3 \cdot 2^{2}-12 \cdot 2=-20
\end{gathered}
$$

Determine where $f(x)$ is increasing or decreasing:
$f^{\prime}(x)>0$, when $x \in(-\infty,-1) \cup(2, \infty)$, so on this intervals function is increasing
$f^{\prime}(x)<0$, when $x \in(-1,2)$, so on this intervals function is concave decreasing
From intervals of increasing/decreasing show then $x=-1$ is a local maximum and $x=2$ is a local minimum.
6. Find $f^{\prime \prime}(x)$

$$
f^{\prime \prime}(x)=12 x-6
$$

Locate potential inflection points by solving the equation $f^{\prime \prime}(x)=0$

$$
\begin{gathered}
12 x-6=0 \\
x=0.5
\end{gathered}
$$

So, $x=0.5$ is the inflection point

$$
f(0.5)=2 \cdot(0.5)^{3}-3 \cdot(0.5)^{2}-12 \cdot(0.5)=-6.5
$$

Determine where $f(x)$ is concave upward or concave downward:
$f^{\prime \prime}(x)>0$, when $x \in(0.5, \infty)$, so on this intervals function is concave upward
$f^{\prime \prime}(x)<0$, when $x \in(-\infty, 0.5)$, so on this intervals function is concave downward
7. Sketch the graph

