Let \mathcal{P} be a family of separating seminorms on a vector space X. Then to each $p \in \mathcal{P}$ and $n \in \mathbb{N}$, associate a set

$$V(p,n) = \left\{ x \colon p(x) < \frac{1}{n} \right\}$$

Let \mathcal{B} be a collection of finite intersections of V(p, n). Define a set U in X to be open if U is a union of translates of members of \mathcal{B} . Then \mathcal{B} is a convex local base for this topology. Prove that this topology makes X into a topological vector space.

Proof. We have to prove that operations addition and of vertors and multiplication by scalars are continuous in that topology.

1) Let $x, y \in X, z = x + y$ and U_z be a neighbourhood of z. We have to find neighbourhoods U_x and U_y of x and y such that

 $U_x + U_y \subset U_z$,

that is

$$x' + y' \in U_z$$

for all $x' \in U_x$ and $y' \in U_y$.

ASSIGNMENT**EXPERT**

Since we may decrease U_z , it suffices to consider the case when U_z is a translate of some V(p, n): $U_z = V(p, n) + z'$

for some $z' \in X$. Moreover, increasing n we can assuem that z' = z. Indeed, since $z \in U_z = V(p, n) + z'$, we see that $z - z' \in V(p, n)$,

that is

$$p(z-z') < \frac{1}{n}.$$

Take any number $m \in \mathbb{N}$ such that

$$p(z-z')+\frac{1}{m}<\frac{1}{n}.$$

We claim that then

$$V(p,m) \subset U_z = V(p,n) + z$$

Indeed, if $a \in z + V(p, m)$, so $p(z - a) < \frac{1}{m}$, then

 $p(z'-a) = p(z'-z+z-a) \le p(z'-z) + p(z-a) \le p(z-z') + \frac{1}{m} < \frac{1}{n}.$ Thus assume that $U_z = z + V(p,n)$ for some p, n. Put

$$U_x = x + V(p, 2n), \qquad U_y = y + V(p, 2n).$$

We claim that then

$$U_x + U_y \subset U_z$$
.

Indeed, let $x' \in U_x$ and $y' \in U_y$, so

$$p(x-x') < \frac{1}{2n}, \quad p(y-y') < \frac{1}{2n'}$$

Then

$$p(x' + y' - z) = p(x' - x + y' - y + \underbrace{x + y - z}_{=0}) = p(x' - x + y' - y) \le p(x' - x) + p(y' - y') \le p(x' - x) + p(y$$

 $y) < \frac{1}{2n} + \frac{1}{2n} = \frac{1}{n}$. Which means that $x' + y' \in z' + V(p, n) = U_z$. Thus addition is continuous.

2) Let $x \in X$ and $t \in \mathbb{R}$, U_{tx} be a neighbourhood of tx. We have to find neighbourhoods U_x of x in X and W_t of t in \mathbb{R} such that

$W_t * U_x \subset U_{tx}$, that is
$t'x' \in U_{tx}$
for all $x' \in U_x$ and $t' \in W_t$.
Again not loosing generality we can assume that $U_{tx} = tx + V(p, n).$
Since p is a seminorm, we have that
p(ty) = t p(y) for all $y \in X$, whence
V(p,n) = tV(p,nt).
Indeed, $y \in tV(p, nt)$ if and only if $m(u/t) < \frac{1}{2}$
$p(y/t) < \frac{1}{nt}$ which can be rewritten as follows:
$p(y)/t < \frac{1}{nt'}$
$p(y) < \frac{1}{n}$
The latter is equivalent to $y \in V(p, n)$.
In particular, $U_{tx} = tx + tV(p,tn) = t(x + V(p,tn)).$
Thus if we put
$U_x = x + V(p, tn),$

then

$$U_{tx} = tU_{x}$$

This proves that multiplication by scalars is also continuous and so X is a topological vector space.

SUBMIT

Suppose V is an open set containing 0 in a topological vector space X. Prove that if

and $r_n \to \infty$ as $n \to \infty$, then

$$X = \bigcup_{n=1}^{\infty} r_n V$$

 $0 < r_1 < r_2 < \cdots$

Proof. Let $x \in X$. We have to show that $x \in r_m V$ for some $m \ge 1$. By assumption V is an open set containing 0. Since 0x = 0 and the multiplication by scalars in X is continuous there exists $\varepsilon > 0$ such that

 $tx \in V$

for all $t \in (-\varepsilon, \varepsilon)$.

Since $r_n \rightarrow \infty$ increases, there exists m > 0 such that

$$0 < \frac{1}{r_m} < \varepsilon$$

Then

$$\frac{1}{r_m}x \in V,$$

whence

$$x \in r_m V \subset \bigcup_{n=1}^{\infty} r_n V,$$

and so $X = \bigcup_{n=1}^{\infty} r_n V$.