Sample: Functionla Analysis - Functional Analysis Task

Let \mathcal{P} be a family of separating seminorms on a vector space X. Then to each $p \in \mathcal{P}$ and $n \in \mathbb{N}$, associate a set

$$
V(p, n)=\left\{x: p(x)<\frac{1}{n}\right\}
$$

Let \mathcal{B} be a collection of finite intersections of $V(p, n)$. Define a set U in X to be open if U is a union of translates of members of \mathcal{B}. Then \mathcal{B} is a convex local base for this topology. Prove that this topology makes X into a topological vector space.

Proof. We have to prove that operations addition and of vertors and multiplication by scalars are continuous in that topology.

1) Let $x, y \in X, z=x+y$ and U_{z} be a neighbourhood of z. We have to find neighbourhoods U_{x} and U_{y} of x and y such that

$$
U_{x}+U_{y} \subset U_{z}
$$

that is

$$
x^{\prime}+y^{\prime} \in U_{z}
$$

for all $x^{\prime} \in U_{x}$ and $y^{\prime} \in U_{y}$.
Since we may decrease U_{z}, it sufffices to consider the case when U_{z} is a translate of some $V(p, n)$:

$$
U_{z}=V(p, n)+z^{\prime}
$$

for some $z^{\prime} \in X$.
Moreover, increasing n we can assuem that $z^{\prime}=z$. Indeed, since $z \in U_{z}=V(p, n)+z^{\prime}$, we see that $z-z^{\prime} \in V(p, n)$,
that is

$$
p\left(z-z^{\prime}\right)<\frac{1}{n}
$$

Take any number $m \in \mathbb{N}$ such that

$$
p\left(z-z^{\prime}\right)+\frac{1}{m}<\frac{1}{n}
$$

We claim that then

$$
z+V(p, m) \subset U_{z}=V(p, n)+z^{\prime}
$$

Indeed, if $a \in z+V(p, m)$, so $p(z-a)<\frac{1}{m}$, then

$$
p\left(z^{\prime}-a\right)=p\left(z^{\prime}-z+z-a\right) \leq p\left(z^{\prime}-z\right)+p(z-a) \leq p\left(z-z^{\prime}\right)+\frac{1}{m}<\frac{1}{n}
$$

Thus assume that $U_{z}=z+V(p, n)$ for some p, n.
Put

$$
U_{x}=x+V(p, 2 n), \quad U_{y}=y+V(p, 2 n)
$$

We claim that then

$$
U_{x}+U_{y} \subset U_{z}
$$

Indeed, let $x^{\prime} \in U_{x}$ and $y^{\prime} \in U_{y}$, so

$$
p\left(x-x^{\prime}\right)<\frac{1}{2 n}, \quad p\left(y-y^{\prime}\right)<\frac{1}{2 n}
$$

Then

$$
p\left(x^{\prime}+y^{\prime}-z\right)=p(x^{\prime}-x+y^{\prime}-y+\underbrace{x+y-z}_{=0})=p\left(x^{\prime}-x+y^{\prime}-y\right) \leq p\left(x^{\prime}-x\right)+p\left(y^{\prime}-\right.
$$

$y)<\frac{1}{2 n}+\frac{1}{2 n}=\frac{1}{n}$.
Which means that $x^{\prime}+y^{\prime} \in z^{\prime}+V(p, n)=U_{z}$.
Thus addition is continuous.
2) Let $x \in X$ and $t \in \mathbb{R}, U_{t x}$ be a neighbourhood of $t x$. We have to find neighbourhoods U_{x} of x in X and W_{t} of t in \mathbb{R} such that

$$
W_{t} * U_{x} \subset U_{t x}
$$

that is

$$
t^{\prime} x^{\prime} \in U_{t x}
$$

for all $x^{\prime} \in U_{x}$ and $t^{\prime} \in W_{t}$.
Again not loosing generality we can assume that

$$
U_{t x}=t x+V(p, n) .
$$

Since p is a seminorm, we have that

$$
\begin{aligned}
p(t y) & =|t| p(y) \\
V(p, n) & =t V(p, n t)
\end{aligned}
$$

for all $y \in X$, whence
Indeed, $y \in t V(p, n t)$ if and only if

$$
p(y / t)<\frac{1}{n t}
$$

which can be rewritten as follows:

$$
\begin{gathered}
p(y) / t<\frac{1}{n t^{\prime}} \\
p(y)<\frac{1}{n}
\end{gathered}
$$

The latter is equivalent to $y \in V(p, n)$.
In particular,

$$
U_{t x}=t x+t V(p, t n)=t(x+V(p, t n))
$$

Thus if we put

$$
U_{x}=x+V(p, t n),
$$

then

$$
U_{t x}=t U_{x} .
$$

This proves that multiplication by scalars is also continuous and so X is a topological vector space.

Suppose V is an open set containing 0 in a topological vector space X. Prove that if

$$
0<r_{1}<r_{2}<\cdots
$$

and $r_{n} \rightarrow \infty$ as $n \rightarrow \infty$, then

$$
X=\cup_{n=1}^{\infty} r_{n} V
$$

Proof. Let $x \in X$. We have to show that $x \in r_{m} V$ for some $m \geq 1$.
By assumption V is an open set containing 0 . Since $0 x=0$ and the multiplication by scalars in X is continuous there exists $\varepsilon>0$ such that

$$
t x \in V
$$

for all $t \in(-\varepsilon, \varepsilon)$.
Since $r_{n} \rightarrow \infty$ increases, there exists $m>0$ such that

$$
0<\frac{1}{r_{m}}<\varepsilon
$$

Then

$$
\frac{1}{r_{m}} x \in V
$$

whence

$$
x \in r_{m} V \subset \cup_{n=1}^{\infty} r_{n} V,
$$

and so $X=\cup_{n=1}^{\infty} r_{n} V$.

