SUBMIT

Sample: Algebra - Factoring quadratics

52. $18z + 45 + z^2$

Firstly rewrite the equation $18z + 45 + z^2$ putting the largest value first and using the same sign as the original middle value (compare our equation in a standard form $ax^2 + bx + c = 0$):

$$z^2 + 18z + 45 = 0$$

Note that there is not a **GCF** for all the terms. A quadratic trinomial is a trinomial of three terms. We can apply **factoring** method by **grouping**.

Identify the values for *a*, *b* and *c*

$$a = 1 b = 18 c = 45$$

Multiply the leading coefficient*a*, 1, and the constant term, *c*:

$$1 \cdot (+45) = 45$$

Consider all of the possible factors of this new product:

Factors of +45
$(1) \cdot (45)$
(3) · (15)
(5) · (9)
(9) · (5)

We can note that **prime factors** of product 45 are $3 \times 3 \times 5$. From the list of factors, we find the one pair that adds to the middle term's coefficient, b. For this example, we need to find a sum of 18.

$$3 + 15 = 18$$

Now we can rewrite the middle term, forming two terms, using these two values:

$$z^2 + 3z + 15z + 45$$

Group the first two terms together and group the last two terms together:

$$(z^2 + 3z) + (15z + 45)$$

Notice the plus sign between the two groups.

Factor the greatest common factor out of each group:

$$z(z+3) + 15(z+3)$$

Notice that the expressions in the parentheses are identical. By **factoring** out the parentheses binomial, we have the answer:

$$(z+3)(z+15)$$

We can check getting answer:

$$(z+3)(z+15)$$

We have to multiply expressions in the parentheses:

$$(z+3)(z+15) = z^2 + 3z + 15z + 45 = z^2 + 18z + 45$$

Also we can apply method **factoring** trinomial by **factor** theorem or by using quadratic formula:

$$az^2 + bz + c = 0$$
 (When $a \neq 0$)

And they are

$$z_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Solve quadratic equation $z^2 + 18z + 45$ using the quadratic formula.

Here we have $a = 1 \ b = 18 \ c = 45$

$$z_{1,2} = \frac{-18 \pm \sqrt{(18)^2 - 4 \cdot 45}}{2}$$
$$z_{1,2} = \frac{-18 \pm \sqrt{324 - 180}}{2}$$
$$z_{1,2} = \frac{-18 \pm \sqrt{144}}{2}$$

144 is a **perfect square** because $12^2 = 144$

$$z_{1,2} = \frac{-18 \pm 12}{2}$$

To calculate first solution we use "+" sign:

$$z_1 = \frac{-18 + 12}{2} = \frac{-6}{2} = -3$$

To calculate second solution we use "-" sign:

$$z_2 = \frac{-18 - 12}{2} = \frac{-30}{2} = -15$$

The solutions are:

$$z_1 = -3$$

 $z_2 = -15$

Use formula for factoring quadratic equation:

$$ax^{2} + bx + c = a(x_{1} - x)(x_{2} - x)$$

In our case we have:

SUBMIT

$$az^{2} + bz - c = a(z_{1} - z)(z_{2} - z)$$
$$(z + 3)(z + 15) = z^{2} + 15z + 3z + 45 = z^{2} + 18z + 45$$

Answer: $z^2 + 18z + 45 = (z + 3)(z + 15)$

78) $a^4b + a^2b^3$

To solve this polynomial is the most appropriate method we can use the Distributive Property to express a polynomial in factored form. Use the Distributive Property to express the polynomial as the product of the **GCF** and the remaining **factor** of each term.

$$a^4b + a^2b^3 = a^2b(a^2 + b^2)$$

The largest monomial that we can factor out of each term is a^2b

Answer: $a^2b(a^2 + b^2)$

It should be noted that quadratic trinomial can be factored using the following three methods:

- Factoring by grouping
- completing the square
- Using quadratic formula.

The "x Method" of **factoring** helps us to see the possible combination of numbers that will equal to a given number when multiplied and added together. Trinomial can be factorized by **factor** theorem or by using quadratic formula. Our task was the most appropriate method of **grouping** the polynomial method as a quadratic equation longer the steps of mathematical calculations.

In solving the polynomial fitting method for the calculation is determined by the form of the polynomial, the presence of the **greatest common factor**, solutions by dividing the possibility of a **perfect square**.

With any method of calculation should be noted the importance of validation solutions.

66.
$$8x^2 - 2xy - y^2$$

To solve this problem, we use the "AC" method of **factoring**. The "AC" method or **factoring** by **grouping** is a technique used to **factor** trinomials. A trinomial is a mathematical expression that consists of three terms. The general form of trinomial in two variables is $x^2 + bxy + cy^2$. This trinomial has two variables, x and y. From factorization theorem, factors of these trinomials are:

$$x^{2} + bxy + cy^{2} = x^{2} + (m + n)xy + (mn)y^{2} = (x + my)(x + ny)$$

Let us **factor** the trinomial $8x^2 - 2xy - y^2$

Identify the values for *a*, *b* and *c*

$$a = 8 b = -2 c = -1$$

SUBMIT

Firstly, we need to find product of $a \cdot c = (8 \cdot (-1)) = -8$

-8	Sum
(-1) (8)	7
(-2) (4)	2
(-4) (2)	(-2)
(-8) (1)	(-7)

As a result of the calculations, we can determine that the solutions of a polynomial in our case, we fit a pair of numbers -4 and 2, they give us sum of value *b*. Getting the values put into the general expression of the polynomial, as a result we obtain the following.

We can write $8x^2 - 4xy + 2xy - y^2 = 4x(2x - y) + y(2x - y)$

Isolate similar terms and factor out the greatest common factor (GCF). Factor out (2x - y) and rewrite:

$$(4x + y)(2x - y)$$

After all conducted mathematical operations we can to verify the obtained expression:

 $(4x + y)(2x - y) = 8x^{2} - 4xy + 2xy - y^{2} = 8x^{2} - 2xy - y^{2}$

The check result received initial expression of a polynomial.

Answer: $8x^2 - 2xy - y^2 = (4x + y)(2x - y)$