Sample: Algebra - Factoring quadratics

52. $18 z+45+z^{2}$

Firstly rewrite the equation $18 z+45+z^{2}$ putting the largest value first and using the same sign as the original middle value (compare our equation in a standard form $a x^{2}+b x+c=0$):

$$
z^{2}+18 z+45=0
$$

Note that there is not a GCF for all the terms. A quadratic trinomial is a trinomial of three terms. We can apply factoring method by grouping.

Identify the values for a, b and c

$$
a=1 b=18 c=45
$$

Multiply the leading coefficient $a, 1$, and the constant term, c :

$$
1 \cdot(+45)=45
$$

Consider all of the possible factors of this new product:

Factors of $\mathbf{+ 4 5}$
$(1) \cdot(45)$
$(3) \cdot(15)$
$(5) \cdot(9)$
$(9) \cdot(5)$

We can note that prime factors of product 45 are $3 \times 3 \times 5$. From the list of factors, we find the one pair that adds to the middle term's coefficient, b. For this example, we need to find a sum of 18 .

$$
3+15=18
$$

Now we can rewrite the middle term, forming two terms, using these two values:

$$
z^{2}+3 z+15 z+45
$$

Group the first two terms together and group the last two terms together:

$$
\left(z^{2}+3 z\right)+(15 z+45)
$$

Notice the plus sign between the two groups.
Factor the greatest common factor out of each group:

$$
z(z+3)+15(z+3)
$$

Notice that the expressions in the parentheses are identical. By factoring out the parentheses binomial, we have the answer:

$$
(z+3)(z+15)
$$

We can check getting answer:

$$
(z+3)(z+15)
$$

We have to multiply expressions in the parentheses:

$$
(z+3)(z+15)=z^{2}+3 z+15 z+45=z^{2}+18 z+45
$$

Also we can apply method factoring trinomial by factor theorem or by using quadratic formula:

$$
a z^{2}+b z+c=0(\text { When } a \neq 0)
$$

And they are

$$
z_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Solve quadratic equation $z^{2}+18 z+45$ using the quadratic formula.
Here we have $a=1 b=18 c=45$

$$
\begin{gathered}
z_{1,2}=\frac{-18 \pm \sqrt{(18)^{2}-4 \cdot 45}}{2} \\
z_{1,2}=\frac{-18 \pm \sqrt{324-180}}{2} \\
z_{1,2}=\frac{-18 \pm \sqrt{144}}{2}
\end{gathered}
$$

144 is a perfect square because $12^{2}=144$

$$
z_{1,2}=\frac{-18 \pm 12}{2}
$$

To calculate first solution we use " + " sign:

$$
z_{1}=\frac{-18+12}{2}=\frac{-6}{2}=-3
$$

To calculate second solution we use "-" sign:

$$
z_{2}=\frac{-18-12}{2}=\frac{-30}{2}=-15
$$

The solutions are:

$$
\begin{gathered}
z_{1}=-3 \\
z_{2}=-15
\end{gathered}
$$

Use formula for factoring quadratic equation:

$$
a x^{2}+b x+c=a\left(x_{1}-x\right)\left(x_{2}-x\right)
$$

In our case we have:

$$
\begin{gathered}
a z^{2}+b z-c=a\left(z_{1}-z\right)\left(z_{2}-z\right) \\
(z+3)(z+15)=z^{2}+15 z+3 z+45=z^{2}+18 z+45
\end{gathered}
$$

Answer: $z^{2}+18 z+45=(z+3)(z+15)$
78) $a^{4} b+a^{2} b^{3}$

To solve this polynomial is the most appropriate method we can use the Distributive Property to express a polynomial in factored form. Use the Distributive Property to express the polynomial as the product of the GCF and the remaining factor of each term.

$$
a^{4} b+a^{2} b^{3}=a^{2} b\left(a^{2}+b^{2}\right)
$$

The largest monomial that we can factor out of each term is $a^{2} b$
Answer: $a^{2} b\left(a^{2}+b^{2}\right)$
It should be noted that quadratic trinomial can be factored using the following three methods:

- Factoring by grouping
- completing the square
- Using quadratic formula.

The "x Method" of factoring helps us to see the possible combination of numbers that will equal to a given number when multiplied and added together. Trinomial can be factorized by factor theorem or by using quadratic formula. Our task was the most appropriate method of grouping the polynomial method as a quadratic equation longer the steps of mathematical calculations.

In solving the polynomial fitting method for the calculation is determined by the form of the polynomial, the presence of the greatest common factor, solutions by dividing the possibility of a perfect square.

With any method of calculation should be noted the importance of validation solutions.
66. $8 x^{2}-2 x y-y^{2}$

To solve this problem, we use the " $A C$ " method of factoring. The " $A C$ " method or factoring by grouping is a technique used to factor trinomials. A trinomial is a mathematical expression that consists of three terms. The general form of trinomial in two variables is $x^{2}+b x y+c y^{2}$. This trinomial has two variables, x and y. From factorization theorem, factors of these trinomials are:

$$
x^{2}+b x y+c y^{2}=x^{2}+(m+n) x y+(m n) y^{2}=(x+m y)(x+n y)
$$

Let us factor the trinomial $8 x^{2}-2 x y-y^{2}$
Identify the values for a, b and c

$$
a=8 b=-2 c=-1
$$

Firstly, we need to find product of $a \cdot c=(8 \cdot(-1))=-8$

$-\mathbf{8}$	Sum
$(-1)(8)$	7
$(-2)(4)$	2
$(-4)(2)$	(-2)
$(-8)(1)$	(-7)

As a result of the calculations, we can determine that the solutions of a polynomial in our case, we fit a pair of numbers -4 and 2 , they give us sum of value b. Getting the values put into the general expression of the polynomial, as a result we obtain the following.

We can write $8 x^{2}-4 x y+2 x y-y^{2}=4 x(2 x-y)+y(2 x-y)$
Isolate similar terms and factor out the greatest common factor (GCF). Factor out ($2 x-y$) and rewrite:

$$
(4 x+y)(2 x-y)
$$

After all conducted mathematical operations we can to verify the obtained expression:
$(4 x+y)(2 x-y)=8 x^{2}-4 x y+2 x y-y^{2}=8 x^{2}-2 x y-y^{2}$
The check result received initial expression of a polynomial.
Answer: $8 x^{2}-2 x y-y^{2}=(4 x+y)(2 x-y)$

