Sample: Real Analysis - Continuity and Differentiability

1)

Since $\lim _{x \rightarrow \infty} f(x)$ exists, then

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x)= & \lim _{x \rightarrow \infty} \frac{f(x) e^{x}}{e^{x}}=(\text { using l'Hospital rule })=\lim _{x \rightarrow \infty} \frac{\left(f(x) e^{x}\right)^{\prime}}{\left(e^{x}\right)^{\prime}} \\
& =\lim _{x \rightarrow \infty} f(x)+f^{\prime}(x)
\end{aligned}
$$

So we get: in case $\lim _{x \rightarrow \infty} f^{\prime}(x)$ exists, it equals to 0 .
Inductively continuing this statement, we get that the same holds for $f^{\prime \prime}, f^{\prime \prime \prime}, \ldots$
Since $\lim _{x \rightarrow \infty} f^{(k)}(x)$ exists, we get that

$$
\lim _{x \rightarrow \infty} f^{(k)}(x)=0
$$

Inductively getting back to lower derivatives we get:

$$
\lim _{x \rightarrow \infty} f^{(i)}(x)=0
$$

for $i=1,2, \ldots, k$
So the statement is proved.

2)

Consider a function

$$
D(x)=\left|\begin{array}{lll}
f(x) & g(x) & h(x) \\
f(a) & g(a) & h(a) \\
f(b) & g(b) & h(b)
\end{array}\right|
$$

$D(x)$ is a linear combination of functions $f(x), g(x), h(x)$.
Since f, g, h are continuous on $[a, b], D(x)$ is continuous on $[a, b]$.
Since f, g, h are differentiable on $(a, b), D(x)$ is differentiable on (a, b).

$$
\begin{aligned}
& D(a)=\left|\begin{array}{lll}
f(a) & g(a) & h(a) \\
f(a) & g(a) & h(a) \\
f(b) & g(b) & h(b)
\end{array}\right|=0 \\
& D(b)=\left|\begin{array}{lll}
f(b) & g(b) & h(b) \\
f(a) & g(a) & h(a) \\
f(b) & g(b) & h(b)
\end{array}\right|=0
\end{aligned}
$$

Last 2 equalities hold because matrices the determinant is taken has 2 identical rows.

By Rolle's theorem,

$$
\begin{gathered}
\exists c \in(a, b): D^{\prime}(c)=0 \\
\prime^{\prime}(c)=\left|\begin{array}{lll}
f^{\prime}(c) & g^{\prime}(c) & h^{\prime}(c) \\
f(a) & g(a) & h(a) \\
f(b) & g(b) & h(b)
\end{array}\right|=0
\end{gathered}
$$

The statement is proved.

3)

Consider a function

$$
F(x)=\frac{1}{\frac{b-a}{2}}\left(f\left(x+\frac{b-a}{2}\right)-f(x)\right)
$$

It is defined at $\left[a, \frac{a+b}{2}\right]$, continuous at $\left[a, \frac{a+b}{2}\right]$ (because f is continuous) and twicedifferentiable on $\left(a, \frac{a+b}{2}\right)$. By mean value theorem,

$$
\begin{gathered}
\exists d \in\left(a, \frac{a+b}{2}\right): F^{\prime}(d)=\frac{F\left(\frac{a+b}{2}\right)-F(a)}{\frac{b-a}{2}} \\
\frac{F\left(\frac{a+b}{2}\right)-F(a)}{\frac{b-a}{2}}=\frac{\frac{\frac{1}{b-a}}{2}\left(f(b)-f\left(\frac{a+b}{2}\right)-f\left(\frac{a+b}{2}\right)+f(a)\right)}{\frac{b-a}{2}} \\
=\frac{f(a)-2 f\left(\frac{a+b}{2}\right)+f(b)}{\frac{(b-a)^{2}}{4}} \\
F^{\prime}(d)=\frac{1}{\frac{b-a}{2}}\left(f^{\prime}\left(d+\frac{b-a}{2}\right)-f^{\prime}(d)\right)
\end{gathered}
$$

Consider a function f^{\prime} on $\left[d, d+\frac{b-a}{2}\right]$. It is continuous on this interval and differentiable on $\left(d, d+\frac{b-a}{2}\right)$ (because f is twice differentiable). Thus, by mean value theorem,

$$
\exists c \in\left(d, d+\frac{b-a}{2}\right): f^{\prime \prime}(c)=\frac{f^{\prime}\left(d+\frac{b-a}{2}\right)-f^{\prime}(d)}{\frac{b-a}{2}}
$$

Substituting this into expression we got earlier we get:

$$
\begin{gathered}
f^{\prime \prime}(c)=\frac{f(a)-2 f\left(\frac{a+b}{2}\right)+f(b)}{\frac{(b-a)^{2}}{4}} \\
f^{\prime \prime}(c) \cdot \frac{(b-a)^{2}}{4}=f(a)-2 f\left(\frac{a+b}{2}\right)+f(b)
\end{gathered}
$$

Since $c \in\left(d, d+\frac{b-a}{2}\right) \subset(a, b)$ we proved the needed statement.

1)

f is continuous at $[a, b]$.

$$
\int_{a}^{b} f^{2}(x) d x=0
$$

Suppose

$$
f(c) \neq 0
$$

for some $c \in[a, b]$.
If we take $\varepsilon=\frac{|f(c)|}{2}$ in the definition of continuity of f at point c we get:

$$
\begin{gathered}
\exists \delta: x \in(c-\delta, c+\delta) \cap(a, b):|f(x)-f(c)|<\frac{|f(c)|}{2} \\
-\frac{|f(c)|}{2}<f(x)-f(c)<\frac{|f(c)|}{2}
\end{gathered}
$$

So

$$
|f(x)|>\frac{|f(c)|}{2}
$$

at in the interval $(c-\delta, c+\delta) \cap(a, b)$.

Then

$$
\begin{aligned}
\int_{a}^{b}{ }^{2}(x) d x & \geq \int_{(c-\delta, c+\delta) \cap(a, b)}{ }^{2}(x) d x \geq \int_{(c-\delta, c+\delta) \cap(a, b)} \frac{|f(c)|}{2} d x \\
& =\frac{|f(c)|}{2} \cdot(\min (c+\delta, b)-\max (c-\delta, a))>0
\end{aligned}
$$

So we get contradiction with

$$
\int_{a}^{b}{ }^{2}(x) d x=0
$$

So $f(x)=0$ at $[a, b]$.

