Sample: Integral Calculus - Area and Integral

Question 1

a) Consider the definite integral

$$\int_{-1}^{1} (x^3 + 3x^2) \, dx$$

i) State the antiderivative of the integral $f(x) = x^3 + 3x^2$

IMPORTANT: DO NOT add a "+ c". It is not necessary when finding an antiderivative to evaluate a definite integral.

Answer:
$$F(x) = \frac{x^4}{4} + x^3$$
.

ii) Use your answer from i) to evaluate the definite integral

$$\int_{-1}^{1} (x^3 + 3x^2) \, dx.$$

Answer:
$$\int_{-1}^{1} (x^3 + 3x^2) dx = 2$$
.

b) Consider the definite integral

$$\int_{0}^{1} 6x^{2}(x^{3}+1)^{4} dx.$$

i) State the appropriate substitution which can be used to evaluate this integral.

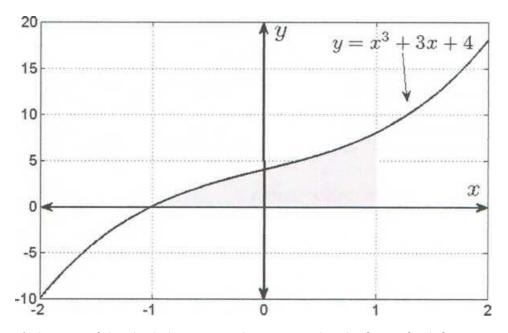
Answer:
$$u = (x^3 + 1)$$
.

ii) State the values of the integration bounds in the new variable

Answer:
$$x = 0 \Rightarrow u = 1$$

$$x = 1 \Rightarrow u = 2$$

iii) Use your answers from i) and ii) to evaluate the definite integral


$$\int_{0}^{1} 6x^{2}(x^{3}+1)^{4} dx.$$

Answer:
$$\int_0^1 6x^2(x^3+1)^4 dx = \frac{62}{5}$$
.

<u>\$</u>

Question 2

Consider the shaded region in the figure below.

a) The area of the shaded region can be expressed in the form of a definite integral

$$\int_{a}^{b} f(x) \, dx$$

Specify the values of a and b, and the expression for f.

Answer:

$$a = -1$$

$$b = 1$$

$$f(x) = x^3 + 3x + 4$$

b) State the antiderivative of the integrand in a).

IMPORTANT: DO NOT add a "+ c". It is not necessary when finding an antiderivative to evaluate a definite integral.

Answer:

$$F(x) = \frac{x^4}{4} + \frac{3x^2}{2} + 4x.$$

c) Use your answers from a) and b) to determine the area of the shaded region.

Answer: Area = 8.

Question 3

Differentiate the following functions with respect to x.

a)
$$f(x) = \int_0^x \frac{1}{t+1} dt$$
.

Answer:
$$\frac{df}{dx} = \frac{1}{x+1}$$
.

b)
$$f(x) = \int_1^{2x^2} \frac{1}{t+1} dt$$
.

Answer:
$$\frac{df}{dx} = \frac{4x}{2x^2+1}$$
.