Question.

Given the number 123456789. Is it possible to find a permutation (i.e. rearrangement that preserves the count of each number) such that the left most digit is evenly divisible by 1 , the two left most digits are evenly divisible by 2 , the three left most digits are divisibly by 3 and so on?

Solution.

We have number $\left\langle d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8} d_{9}>\right.$, where digits form the permutations of 123456789. We need to find, what position will have every digit to qualify the answer.

1) As $\left\langle d_{1} d_{2}\right\rangle$ should be divisible by $\left.2,<d_{1} d_{2} d_{3} d_{4}\right\rangle$ should be divisible by $\mathbf{4}$ (and it should be also divisible by 2) and so on, all even digits ($\mathrm{d}_{2}, \mathrm{~d}_{4}, \mathrm{~d}_{6}, \mathrm{~d}_{8}$) will be even ($2,4,6,8$).
2) As $<d_{1} d_{2} d_{3} d_{4} d_{5}>$ should be divisible by $\mathbf{5}$, the last digit should be 0 or 5 . As 0 is not used, so, $d_{5}=5$.
3) $<d_{1} d_{2} d_{3} d_{4}>$ should be divisible by 4 . The divisibility rule for $\mathbf{4}$ states that if the last 2 digits are divisible by 4 , then the whole number is divisible by 4 . So $\left\langle d_{3} d_{4}\right\rangle$ is divisible by $4, d_{3}$ is odd and d_{4} is even, and d_{3} is not equal to 5 (by item (2)). We can enumerate all numbers witch match this pattern: $12,16,32,36,72,76,92,96 .\left\langle d_{3} d_{4}\right\rangle$ is one of them.
We can notice, that d_{4} by this pattern will be equal to 2 or to 6 .
4) Using pattern from item (3) we can analyze digits $\left\langle d_{7} d_{8}\right\rangle$. As $\left\langle d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8}\right\rangle$ should be divisible by 8 , this number will also be divisible by 4 . So the last two digits $\left\langle d_{7} d_{8}\right\rangle$ will match the same rule as $\left\langle d_{3} d_{4}\right\rangle$, so d_{8} will be also equal to 2 or to 6 .
5) As it was proved in (3) and (4), d_{4} and d_{8} will be equal to 2 or to 6 . In this case, d_{2} and d_{6} will be equal to 4 or to 8 .

As we have found, d_{5} is equal to $5, d_{4}$ and d_{8} are equal to $\mathbf{2}$ or to $\mathbf{6}, d_{2}$ and d_{4} are equal to $\mathbf{4}$ or to 8. This information will be used for further conclusions.
6) $<d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8}>$ should be divisible by 8 . The divisibility rule for 8 states, that last 3 digits should be divisible by 8 , so $\left\langle d_{6} d_{7} d_{8}>\right.$ should be divisible by 8 . As we know, d_{6} is equal to 4 or to $8, d_{8}$ is equal to 2 or to 6 and d_{7} is not equal to 5 . We can match only a few numbers for this pattern: $416,432,472,496,816,832,872,896$. So $\left\langle d_{6} d_{7} d_{8}>\right.$ is one of them.
7) $<d_{1} d_{2} d_{3}>$ should be divisible by 3 . The divisibility rule for $\mathbf{3}$ states, that the sum of all digits of number should be divisible by 3 . Also we know, that d_{1} and d_{3} are odd and not equal to $5, d_{2}$ is even and is equal to 4 or to 8 . Only few numbers matches this pattern: 147, 183, 189, 381, 387, $741,783,981$. So $<d_{1} d_{2} d_{3}>$ is one of them.
8) $\left\langle d_{1} d_{2} d_{3} d_{4} d_{5} d_{6}>\right.$ should be divisible by 6 , so it should be divisible by $\mathbf{3}$, so the rule (7) can be applicable in this case. As sum of d_{1}, d_{2} and d_{3} is divisible by $\mathbf{3}$ (from (7)), so sum of d_{4}, d_{5} and d_{6} should be divisible by 3 . As we know, d_{5} is equal to $5, d_{6}$ is equal to 4 or 8 and d_{4} is equal to 2 or to 6 . There are only two numbers, which match this pattern: 258 and 654.

Now we can concatenate all patterns from (1) - (8).

1. If $\left\langle d_{4} d_{5} d_{6}\right\rangle=258$ (from (8)), then $\left\langle d_{6} d_{7} d_{8}\right\rangle$ can be equal to 816 or to 896 (from (6)). So we can have $\left\langle d_{1} d_{2} d_{3} 25816 d_{9}\right\rangle$ or $\left\langle d_{1} d_{2} d_{3} 25896 d_{9}\right\rangle$.
In the first case we can not match $\left\langle d_{1} d_{2} d_{3}\right\rangle$ to any of variants from (7), as 1 and 8 are already used. But for the second case we can match $\left\langle d_{1} d_{2} d_{3}\right\rangle$ with 2 variants from (7): 147 and 741 . And after matching the last digit we have got two variants of number:
$d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8} d_{9}$
147258963
741258963
2. If $\left\langle d_{4} d_{5} d_{6}\right\rangle=654$ (from (8)), then $\left\langle d_{6} d_{7} d_{8}\right\rangle$ can be equal to 472 or 432 (from (6)). So we can have $\left\langle d_{1} d_{2} d_{3} 65472 d_{9}\right\rangle$ or $\left\langle d_{1} d_{2} d_{3} 65432 d_{9}\right\rangle$.
In the first case we can match $\left\langle d_{1} d_{2} d_{3}\right\rangle$ with next variants from (7): 183, 189, 381, 981. In the second case we can match $\left\langle d_{1} d_{2} d_{3}\right\rangle$ with the next variants from (7): 189 and 981 . And after matching the last digit we have got another 6 options:
$d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7} d_{8} d_{9}$
183654729
189654723
381654729
981654723
189654327
981654327
By default all matching numbers are divisible by $\mathbf{9}$, as according to the divisibility rule for 9 , the sum of all digits is divisible by 9 .
The last thing to check is divisibility by 7 of number $\left\langle d_{1} d_{2} d_{3} d_{4} d_{5} d_{6} d_{7}>\right.$. It is simply checked for the all 8 numbers found in solution. And we can found, that there is the only number, which matches the question and it is $\mathbf{3 8 1 6 5 4 7 2 9 .}$

Answer.

Such number exists. It is $\mathbf{3 8 1 6 5 4 7 2 9}$.

Note.

Such number can be found by the bust of all permutations of 123456789 with checks for divisibility on each step. But the total number of all permutations is equal to 9 ! = $9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1=362880$ which (including all divisibility checks) will take a noticeable large amount of time.

Divisibility rules see in:
https://en.wikipedia.org/wiki/Divisibility_rule

