Question \#79850

Consider the following function h.
$\operatorname{def} h(n)$:

$$
f=0
$$

for i in range $(1, n+1)$:

$$
\text { if } n \% i==0
$$

$$
f=f+1
$$

return(f\%2 == 1)
The function $h(n)$ given above returns True for a positive number n whenever:
n is a multiple of 2
n is a composite number
n is a prime number
n is a perfect square

Answer:

The given function $h(n)$ counts the number of all possible composition of two integer numbers, which product gives n, and returns True if the result is odd.

This algorithm is used to examine whether an integer number n is a perfect square.
The screenshot bellow shows the output for positive integers below 20. As we can see, $h(n)$ returns True only for numbers 1, 4, 9 and 16, which are perfect squares.

