Answer on Question #74859 - Programming & Computer Science - C

Question 74859:

How to change the code so that it can sort:

struct SResult sample[] = { {"Al234", 10}, {"A1239", 5},
{"A1394", 7}, {"Al1434", 3}, {"Al454", 5}, {"A2884", 7}, {"A3235", 7},
{"A4334"™, 9}, {"An4884"™, 2}, {"A6934", 5}, {"A7265", T}, {"A9559", 3} };

void counting sort(struct SResult scoreArr[], int N, int final[]) {
int freq[ll] = { 0 }, cfreq[ll] = { 0 };
int i, curScore;

//1. Compute Frequency
for (1 = 0; 1 < N; 1i++)
freq[scoreArr([i].score] ++;

//2. Compute Cumulative Frequency
cfreql[0] = freqlO];
for (1 = 1; 1 < 11; 1i++)

cfreqli] = cfreql[i-1] + freqgqli];

//3. Produce Final Position
for (i = 0; 1 < N; i++) {

curScore = scoreArr[i].score;
final[cfreq[curScore] - 1] = curScore;
cfreglcurScore]--;
}
}
Answer:
1) Assign indexes instead of scores: final[cfreq[curScore] - 1] = i .

2) Use a macro to define the size: int freq[RANGE + 1] = { 0 }, cfreq[RANGE + 1] = { 0

#include "stdlib.h"
#include "stdio.h"

struct SResult {
char ID[6];

int score;

struct SResult sample[] = { {"A1234", 10}, {"A1239", 5},
{"A1394", 7}, {"A1434", 3}, {"A1454", 5}, {"A2884", 7}, {"A3235", 7},
{"A4334", 9}, {"A4884", 2}, {"A6934", 5}, {"A7265", 7}, {"A9559", 3} };

void counting_sort(struct SResult scoreArr[], int N, int final[]) {
int freq[11] ={ 0}, cfreq[11]={0};

inti, curScore;

//1. Compute Frequency
for (i=0;i<N;i++)

freq[scoreArr[i].score | ++;

//2. Compute Cumulative Frequency
cfreq[0] = freq[0];
for(i=1;i<11;i++)

cfreq[i] = cfreq[i-1] + freq[i];

//3. Produce Final Position
for (i=0;i<N;i++){
curScore = scoreArr[i].score;
final[cfreq[curScore] - 1] = curScore;

cfreq[curScore]--;

int main(void) {
int *final = 0;
unsigned i =0;
unsigned arrN = sizeof sample / sizeof sample[0];
final = calloc(arrN, sizeof sample[0]);
counting_sort(sample, arrN, final);
for (i=0;i<arrN; i++)
printf("%d %s %d\n", final[i], sample[final[i]].ID,
sample[final[i]].score);
free(final);

return O;

ttinclude "stdlib.h"
#tinclude "stdio.h"

struct SResult {
char ID[6];

int score;

struct SResult sample[] = {{"A1234", 10}, {"A1239", 5},
{"A1394", 7}, {"A1434", 3}, {"A1454", 5}, {"A2884", 7}, {"A3235", 7},
{"A4334", 9}, {"A4884", 2}, {"A6934", 5}, {"A7265", 7}, {"A9559", 3} };

#define MAX_SCORE 1000

//min=1o0r0

void counting_sort(struct SResult scoreArr[], const int arrN, int final[]) {
int freq[MAX_SCORE + 1] = {0}, cfreq[MAX_SCORE + 1] = {0};

int i, curScore;

//1. Compute Frequency
for (i=0;i<arrN; i++)

freq[scoreArr[i].score] ++;

//2. Compute Cumulative Frequency
cfreq[0] = freq[0];
for (i=1;i<arrN; i++)

cfreq[i] = cfreq[i - 1] + freq[il;

//3. Produce Final Position

for (i=0;i<arrN; i++) {
curScore = scoreArr[i].score;
final[cfreq[curScore]-1]=1;

cfreq[curScore]--;

int main(void) {
int *final = 0;
unsigned i =0;
unsigned arrN = sizeof sample / sizeof sample[0];
final = calloc(arrN, sizeof sample[0]);
counting_sort(sample, arrN, final);
for (i=0;i<arrN; i++)

printf("%d %s %d\n", final[i], sample[final[i]].ID,

samplel[final[i]].score);
free(final);

return 0;

Answer provided by AssignmentExpert.com

