

Answer on Question #74859 - Programming & Computer Science - C

Question 74859:

How to change the code so that it can sort:

struct SResult sample[] = { {"A1234", 10}, {"A1239", 5},

 {"A1394", 7}, {"A1434", 3}, {"A1454", 5}, {"A2884", 7}, {"A3235", 7},

 {"A4334", 9}, {"A4884", 2}, {"A6934", 5}, {"A7265", 7}, {"A9559", 3} };

void counting_sort(struct SResult scoreArr[], int N, int final[]) {

 int freq[11] = { 0 }, cfreq[11] = { 0 };

 int i, curScore;

 //1. Compute Frequency

 for (i = 0; i < N; i++)

 freq[scoreArr[i].score] ++;

 //2. Compute Cumulative Frequency

 cfreq[0] = freq[0];

 for (i = 1; i < 11; i++)

 cfreq[i] = cfreq[i-1] + freq[i];

 //3. Produce Final Position

 for (i = 0; i < N; i++) {

 curScore = scoreArr[i].score;

 final[cfreq[curScore] - 1] = curScore;

 cfreq[curScore]--;

 }

}

Answer:

1) Assign indexes instead of scores: final[cfreq[curScore] - 1] = i .

2) Use a macro to define the size: int freq[RANGE + 1] = { 0 }, cfreq[RANGE + 1] = { 0 } .

===

#include "stdlib.h"

#include "stdio.h"

struct SResult {

 char ID[6];

 int score;

};

struct SResult sample[] = { {"A1234", 10}, {"A1239", 5},

 {"A1394", 7}, {"A1434", 3}, {"A1454", 5}, {"A2884", 7}, {"A3235", 7},

 {"A4334", 9}, {"A4884", 2}, {"A6934", 5}, {"A7265", 7}, {"A9559", 3} };

void counting_sort(struct SResult scoreArr[], int N, int final[]) {

 int freq[11] = { 0 }, cfreq[11] = { 0 };

 int i, curScore;

 //1. Compute Frequency

 for (i = 0; i < N; i++)

 freq[scoreArr[i].score] ++;

 //2. Compute Cumulative Frequency

 cfreq[0] = freq[0];

 for (i = 1; i < 11; i++)

 cfreq[i] = cfreq[i-1] + freq[i];

 //3. Produce Final Position

 for (i = 0; i < N; i++) {

 curScore = scoreArr[i].score;

 final[cfreq[curScore] - 1] = curScore;

 cfreq[curScore]--;

 }

}

int main(void) {

 int *final = 0;

 unsigned i = 0;

 unsigned arrN = sizeof sample / sizeof sample[0];

 final = calloc(arrN, sizeof sample[0]);

 counting_sort(sample, arrN, final);

 for (i = 0; i < arrN; i++)

 printf("%d %s %d\n", final[i], sample[final[i]].ID,

 sample[final[i]].score);

 free(final);

 return 0;

}

#include "stdlib.h"

#include "stdio.h"

struct SResult {

 char ID[6];

 int score;

};

struct SResult sample[] = { {"A1234", 10}, {"A1239", 5},

 {"A1394", 7}, {"A1434", 3}, {"A1454", 5}, {"A2884", 7}, {"A3235", 7},

 {"A4334", 9}, {"A4884", 2}, {"A6934", 5}, {"A7265", 7}, {"A9559", 3} };

#define MAX_SCORE 1000

// min = 1 or 0

void counting_sort(struct SResult scoreArr[], const int arrN, int final[]) {

 int freq[MAX_SCORE + 1] = {0}, cfreq[MAX_SCORE + 1] = {0};

 int i, curScore;

 //1. Compute Frequency

 for (i = 0; i < arrN; i++)

 freq[scoreArr[i].score] ++;

 //2. Compute Cumulative Frequency

 cfreq[0] = freq[0];

 for (i = 1; i < arrN; i++)

 cfreq[i] = cfreq[i - 1] + freq[i];

 //3. Produce Final Position

 for (i = 0; i < arrN; i++) {

 curScore = scoreArr[i].score;

 final[cfreq[curScore] - 1] = i;

 cfreq[curScore]--;

 }

}

int main(void) {

 int *final = 0;

 unsigned i = 0;

 unsigned arrN = sizeof sample / sizeof sample[0];

 final = calloc(arrN, sizeof sample[0]);

 counting_sort(sample, arrN, final);

 for (i = 0; i < arrN; i++)

 printf("%d %s %d\n", final[i], sample[final[i]].ID,

 sample[final[i]].score);

 free(final);

 return 0;

}

 Answer provided by AssignmentExpert.com

