Question:
Hello, I'm not sure how to start my assignment and was hoping you could help.

Hi! | have written a step by step instruction how to begin to code any assignment.

1. The first step is choosing a paradigm of programming that you will be using to
develop your assignment. It is usually a functional or OOP(Object oriented
programming) paradigms. This helps you to create a logic of you code and
interaction with functions(i.e. events in functional programming) or entities(i.e.
classes in OOP). Before all | recommend you to write a main functions/objects
that your application should will contain. It helps you to begin with top
abstraction level and move deeper to build logic relation between functions.
You have to begin from most obvious functionalities.

a. If you choose the first one(functional programming) you will:
i. Create a h-files(with .h extensions) - the files which contains
functions prototypes and all global variables. For good
readability you have to contain all this to namespaces like in

example:
Projects T B AL | terminalcommands.h $ x| # & windowscommai
* |li= FileManager [master] 1 #ifndef TERMINALCOMMANDS H
| = FileManager.pro #define TERMINALCOMMANDS_H
- Headers A
il S #include <string>
v i
~ [utils * namespace commands {
h| convert.h v) -, .
] pulldata.h {{ Containes termminal commands for 03

- using std::string;
h| relocating.h

B terminalcommands.h 11 * namespace unixcommands {
|n] catalogmodel.h 1

: string CreateDir(const char* path, const char* name):
|n catalogpresenter.h o (RSl S0 ;)

string Rename(co ar* old_name, const ar* new_name);

|n] filedirectory.h string CopyFile(ar* source_path, con har* new_path);
+ |z Sources 1 string MoveFile(const char* source_path, const char* new_path);
v [ui 1 string DeleteFile(const char* file_path);
k “d Unllx 1 string CopyDir(const char# source_path, const char* new_path);
v [utils string MoveDir(c r+ source_path, const char* new_path);
e] catalogpresenter.cpp string DeleteDir(const char+* file_path);
le«] main.cpp }
» li&@ Resources | * namespace windowscommands {
26
}

#endif // TERMINALCOMMANDS_H

Look, | have a file terminalcommands.h that provides a logic of system-based
terminal commands. | created a namespace commands that includes
subnamespaces(unixcommand and windowscommands) or some global variables or
functions for all namespaces. You can have a lot h-files and their quantity depends
on you logic-divided functionalities.

You can read more about .h-files here:
https://www.tutorialspoint.com/cprogramming/c_header_files.htm

ii. Then you must create cpp-files(with .cpp extension) for every .h
file. The name of .cpp file must be the same of .h file. Don’t
forget to include you header file to .cpp.

Now you can define your functions that have been prototyped in
header file and don’t forget to follow your namespace hierarchy
as same as header file. In picture example below | show how to

do it:
Projects il A =T RS | terminalcommands.cpp + X | # <Select Symbol>
* i@ FileManager [master] 1| #include "term'inalcommaﬁ.ds.h“l

| FileManager.pro

'y @ Headers * namespace commands {

* B Sources * namespace unixcommands {
vl ui
vl unix v std::string Rename(const char *old_name, const char *new_name)
e [
N lftlls string com = static_cast<string>("mv ") + old_name + " " + new_name;
|+ convert.cpp] Cetic
o+ pulldata_unix.cpp 11}

i+ pulldata_win.cpp

T : * std::string CopyFile{const char *source_path, const char #new_path
|z« relocating.cpp i ot e ; Srmehis : path)
B terminalcommands.cpp 5 string com = static_cast<string>("cp ") + source_path + " " + new_path
le+| catalogpresenter.cpp 1 return com;
|e+] main.cpp : b
» li# Resources 19 * std::string MoveFile{const char #*source_path, const char *new_path)

iii. The next step will be to include you header files to main.cpp and
use function from it.

b. If you choose the second one(OOP programming) you have to
understand essence and concepts of this paradigm and then you can
begin:

i. Firstly you have to highlight your classes and think about
functions they provides.

ii. You have to choose a design pattern that will provide a logic of
interaction with classes.

You can take a look about it here:
https://sourcemaking.com/design_patterns

If you not acquainted with patterns or you assignment is simple
you can skip this step.

iii. The next step is creating a UML diagrams(the most useful for
me was Use Case and Class or Object diagrams) that help you
understand a logic of interactions and to fix something easy in
future.

If you not acquainted with UML or you assignment is simple you
can describe interactions in your notebook. Don’t forget about

https://sourcemaking.com/design_patterns

this step because it really helpful to develop faster and get a
quality application.

Take a look about it here:
https://www.visual-paradigm.com/quide/uml-unified-modeling-language
[uml-class-diagram-tutorial
iv. After all you can begin create you application:
1. Create a h-files(with .h extensions) - the files which
contains classes declarations and all global variables like
in example(don’t pay attention to syntax, only to structure

of code):
Projects $ T B0 < |n| progressrelocate.h # X | # +# IncreaseStep(const int &): void
~ li= FileManager [master] i 1 #ifndef PROGRESSRELOCATE_H
| = FileManager.pro #define PROGRESSRELOCATE_H

#include <QWidget>

il Headers #include <QProgressBar>

v I'_Ji #include <string>
In| deletedialog.h
|n] dia[og_h class QProgressBar;

|n] editdialog.h

i : ¥ class Progress: public QWidget{
|n] icatalogview.h

1 Q_DBIECT
progressrelocate.h 11 private:
In] relocatedialog.h ; . WPragressBar* Orog;
T H E: signals:
] tablew!dgetd.ate.ltem.h : a0 Cnangeteonst: Snes)s
|n] tablewidgetsizeitem.h publics
~ | utils 1 Progress(/+const std::string &path_old, const std::string &path_new,#*/ QWidget* pobj
[l convert.h 1 void SetMaxValue(const int& walue);
n] pL‘Illdata'h //public slots:
|n] relocating.h void IncreaseStep(const int &step);
|n| terminalcommands.h 3

T £ SRELOCA
Bl catalogmcdel.h #endif // PROGRESSRELOCATE_H

a 23
|h| catalogpresenter.h

2. Then you must create .cpp files for every .h file. The
name of .cpp file must be the same of .h file. Don’t forget
to include you header file to .cpp like in the first
paragraph.

Now you can define your functions inside that have been
prototyped in classes in header file.

3. The next step will be to include you header files to
main.cpp and create class instances and use it like in the
first paragraph.

That’s all! | hope it helps you to begin an assignment and make your code more
readable.

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial
https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-class-diagram-tutorial

