

Answer on Question#62454 – Programming – C#
Student.cs:
namespace FreelanceStudents
{
 using System;
 using System.Collections.Generic;

 public struct Student
 {
 public Guid Id { get; set; }

 public string Name { get; set; }

 public IEnumerable<DisciplineGrade> DisciplineGrades { get; set; }

 public override bool Equals(object obj)
 {
 return base.Equals(obj);
 }

 public bool Equals(Student other)
 {
 return Id.Equals(other.Id) && string.Equals(Name, other.Name) && Equals(DisciplineGrades,
other.DisciplineGrades);
 }

 public override int GetHashCode()
 {
 unchecked
 {
 var hashCode = Id.GetHashCode();
 hashCode = (hashCode*397) ^ (Name != null ? Name.GetHashCode() : 0);
 hashCode = (hashCode*397) ^ (DisciplineGrades != null ? DisciplineGrades.GetHashCode() : 0);
 return hashCode;
 }
 }
 }
}

DisciplineGrade.cs:
namespace FreelanceStudents
{
 using System;

 public struct DisciplineGrade
 {
 public Guid Id { get; set; }

 public string DisciplineName { get; set; }

 public int Grade { get; set; }

 public Guid StudentId { get; set; }

 public Student Student { get; set; }
 }
}

Program.cs:
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace FreelanceStudents
{
 class Program
 {
 private const string MathName = "Math";
 private const string EnglishName = "English";
 private const string ScienceName = "Science";

 static void Main(string[] args)
 {
 Console.WriteLine("Enter number of students");
 var numberOfStudents = int.Parse(Console.ReadLine());
 var students = new Student[numberOfStudents];

 for (var i = 0; i < numberOfStudents; i++)
 {
 Console.WriteLine("Enter name of student");
 var studentName = Console.ReadLine();
 Console.WriteLine($"Enter grade in {MathName}");
 var mathGrade = int.Parse(Console.ReadLine());
 Console.WriteLine($"Enter grade in {EnglishName}");
 var englishGrade = int.Parse(Console.ReadLine());
 Console.WriteLine($"Enter grade in {ScienceName}");
 var scienceGrade = int.Parse(Console.ReadLine());

 var studentId = Guid.NewGuid();
 var student = new Student
 {
 Id = studentId,
 Name = studentName,
 DisciplineGrades = new List<DisciplineGrade>
 {
 new DisciplineGrade
 {
 Id = Guid.NewGuid(),

 DisciplineName = MathName,
 Grade = mathGrade,
 StudentId = studentId
 },
 new DisciplineGrade
 {
 Id = Guid.NewGuid(),
 DisciplineName = EnglishName,
 Grade = englishGrade,
 StudentId = studentId
 },
 new DisciplineGrade
 {
 Id = Guid.NewGuid(),
 DisciplineName = ScienceName,
 Grade = scienceGrade,
 StudentId = studentId
 }
 }
 };

 students[i] = student;
 }

 foreach (var student in students)
 {
 var averageGrade = student.DisciplineGrades.Average(dg => dg.Grade);

 var studentGrades = GetGradesForStudent(student);

 Console.WriteLine($"{studentGrades}");
 Console.WriteLine($"{student.Name} average grade is: {averageGrade}");

 if (averageGrade > 60)
 {
 Console.WriteLine($"{student.Name} has gained over 60%! Congratulations!");
 }
 }

 Console.WriteLine("Search for grades of student: (enter name of student)");
 var studentSearchName = Console.ReadLine();

 var searchStudentItem = students.FirstOrDefault(st => st.Name == studentSearchName);

 Console.WriteLine(searchStudentItem.Equals(default(Student))
 ? "Student with provided name has not found"
 : GetGradesForStudent(searchStudentItem));

 Console.WriteLine("Enter subject to find greatest grade");
 var subjectToFindGrade = Console.ReadLine();

 var searchSubjectItems = students.SelectMany(st => st.DisciplineGrades.Where(dg => dg.DisciplineName
== subjectToFindGrade));
 var subjectItemWithMaxGrade =
 searchSubjectItems.First(si => si.Grade == searchSubjectItems.Max(i => i.Grade));
 subjectItemWithMaxGrade.Student = students.Single(st => st.Id ==
subjectItemWithMaxGrade.StudentId);

 Console.WriteLine(!searchSubjectItems.Any()
 ? "Subject with provided name has not found"
 : $"{subjectItemWithMaxGrade.Student.Name} has gained max score on subject
{subjectItemWithMaxGrade.DisciplineName}: {subjectItemWithMaxGrade.Grade}");

 }

 private static string GetGradesForStudent(Student student)
 {
 return $"{student.Name} " + string.Join(" | ", student.DisciplineGrades
 .Select(dg => string.Join(" ", dg.DisciplineName, ":", dg.Grade)));
 }
 }
}

