Library System

The program consists of the following classes:

1) Book — for store information about a some book;

2) LibStore — for store and manipulate an array of books;

3) loLibrary — has input/output methods for communicate with user.
Assigning all the methods easy to understand based on their names.
Object-oriented programming (OOP) is a programming paradigm based on the concept of
"objects”, which may contain data, in the form of fields, often known as attributes; and code, in
the form of procedures, often known as methods.
OOP based on polymorphism, encapsulation and inheritance.

Examples:

1.Encapsulation

If a class disallows calling code from accessing internal object data and forces access through
methods only, this is a strong form of abstraction or information hiding known as encapsulation.
In our code for example it is hidden fields in Book class and "getters™ and "setters™ methods to
allow access to them.

class Book

{
string title;
string author;
int year;

bool in_library; // hidden fields

void setTitle(string s_title); // “setters”
void setAuthor(string s_author);

void setYear(int s_year);

void setInLib(bool in_lib);

string getTitle();// “getters”
string getAuthor();

int getYear();

bool getinLib();

}3

2.Inheritance

This allows classes to be arranged in a hierarchy that represents "is-a-type-of" relationships.
In our code, class loLibrary publicly inherits class LibStore. loLibrary has access to class fields
LibStore with access modifier: protected and to public methods.

class LibStore

{
protected:

vector<Book> books;
)3

class IolLibrary: public LibStore
{. .. %



3. Polymorphism

Example of polymorphism can be a overloaded constructor of Book class.
class Book

{
public:

Book();

Book(string s_title, string s_author, int s_year, bool in_lib);
b

The work of program

t the beginning, the program shows the menu for modeling the librar
sh-4.3% main
Library modulation system...
Choose your action:

1 - Show all books

2 - Add book

3 - Delete book

4 - Change state of book

e

Exit

. The menu is as follows.

For add new book, you should type 2 and then write book name, author name and publication
ear.

2

Add new book, please enter next fields:

Book name:

The Black Window

Author name:

Daniel Silva

Publication year:

20816

Choose your action:
1 - Show all books
- Add book
Delete book
Change state of book
Exit

Type 1 for show all book in library.



Books list:
Number Book name
1 The Black Window
2 After tou
Choose your action:
1 - Show all books
2 - Add book
- Delete book
- Change state of book
- Exit

Author name
Daniel Silva
Jojo Moyes

Publication year State
2816 In library
2016 In library

For delete book you should type a number of book, which you want to delete.
And for changing book states type number of book and its state.



main.c

#include <iostream>
#include "loLibrary.h"

using namespace std;

int main()

{
loLibrary* lib = new loLibrary();
lib->run();
return O;



book.h

#pragma once
#include <string>

using namespace std;

class Book

{
string title;
string author;
int year,;

bool in_library; //state which show where is book: in library or in use by readers

public:
Book();
Book(string s_title, string s_author, int s_year, bool in_lib);
~Book();

void setTitle(string s_title);
void setAuthor(string s_author);
void setYear(int s_year);

void setInLib(bool in_lib);

string getTitle();
string getAuthor();
int getYear();

bool getInLib();



book.cpp
#include "book.h"

Book::Book()

{
year = 0;
in_library = false;
}
Book::Book(string s_title, string s_author, int s_year, bool in_lib)

{

title = s_title;
author = s_author;
year =S_year,;
in_library = in_lib;
}
Book::~Book()
{
}
void Book::setTitle(string s_title)
{
title = s_title;
¥
void Book::setAuthor(string s_author)
{
author =s_author;
¥
void Book::setYear(int s_year)
{
year =s_year,;
¥
void Book::setInLib(bool in_lib)
{
in_library = in_lib;
}
string Book::getTitle()
{
return title;
¥
string Book::getAuthor()
{
return author;
¥
int Book::getYear()
{
return year;
¥

bool Book::getInLib()
{



return in_library;



loLibrary.h

#pragma once
#include <iostream>
#include <iomanip>
#include "LibStore.h"

class loLibrary: public LibStore
{

public:
loLibrary();

void run();

void showAll();
void addBookIn();
void deleteBookin();
void changeState();



loLibrary.cpp
#include "loLibrary.h"

loLibrary::loLibrary():LibStore()
{

}

void loLibrary::run()

{

cout<<"Library modulation system..."<<endl;

int act;

do

{
cout<<"Choose your action:"<<endl;
cout<<"1 - Show all books"<<endl;
cout<<"2 - Add book"<<endl;
cout<<"3 - Delete book"<<endl;
cout<<"4 - Change state of book"<<endl;
cout<<"0 - Exit"<<endl;

cin>>act;

switch(act)

{

case 0:
exit(0);
break;

case 1:
showAll();
break;

case 2:
addBookIn();
break;

case 3:
deleteBookIn();
break;

case 4.
changeState();
break;

Ywhile(act != 0);
}

void loLibrary::showAll()
{

cout<<"Books list:"<<endl,
if(books.empty())
{

cout<<"list empty"<<endl;
return;

¥



cout<<setw(10)<<"Number"<<setw(20)<<"Book name"<<setw(20)<<"Author
name"<<setw(20)<<"Publication year"<<setw(20)<<"State"<<endl,
for(int i=0;i<books.size();i++)

{

cout<<setw(10)<<i+1<<setw(20)<<booksJ[i].getTitle()<<setw(20)<<books[i].getAuthor()
<<setw(20)<<booksl[i].getYear();
if(books[i].getInLib())

{
cout<<setw(20)<<"In library"<<endl;
}else
{
cout<<setw(10)<<"In use"<<endl;
}
}
}
void loLibrary::addBooklIn()
{
string name,author;
int year,;
cout<<"Add new book, please enter next fields:"<<endl,
cin.ignore();
cout<<"Book name:"<<endlI;
getline(cin,name);
cout<<"Author name:"<<endl;
getline(cin,author);
cout<<"Publication year:"<<endl;
cin>>year;
addBook(name,author,year);
}
void loLibrary::deleteBooklIn()
{
showAll();
cout<<"Write number of book for delete:"<<endl;
int num;
cin>>num;
deleteBook(num-1);
}
void loLibrary::changeState()
{

showAll();

cout<<"Write number of book for edit state:"<<endl;

int num, state;

cin>>num;

cout<<"Write 1 - if book in library, O - if book in use"<<endl;
cin>>state;

setBookState(num-1,state==1);



LibStore.h

#pragma once
#include <vector>
#include "book.h"

class LibStore

{

protected:
vector<Book> books;

public:

LibStore();
~LibStore();

void addBook(Book b);
void addBook(string s_title, string s_author, int s_year);

void deleteBook(int n);

void setBookState(int n, bool in_lib);



LibStore.cpp
#include "LibStore.h"

LibStore::LibStore()
{

b
LibStore::~LibStore()

{

¥

void LibStore::addBook(Book b)
{

}

void LibStore::addBook(string s_title, string s_author, ints_year)

books.push_back(b);

Book b(s_title,s_author,s_year,true);
books.push_back(b);

b
void LibStore::deleteBook(int n)
{
if(n >= 0 && n < books.size())
books.erase(books.begin()+n);
b
void LibStore::setBookState(int n, bool in_lib)
{
if(n >= 0 && n < books.size())
books[n].setInLib(in_lib);
i

http://www.AssignmentExpert.com/



