#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#include <pthread.h>

struct Params
{
int *start;
size_t len;

int depth;

// only used for synchronizing stdout from overlap.

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

// forward declare our thread proc

void *merge_sort_thread(void *pv);

// a simple merge algorithm. there are *several* more efficient ways
// of doing this, but the purpose of this exercise is to establish
// merge-threading, so we stick with simple for now.
void merge(int *start, int *mid, int *end)
{
int *res = malloc((end - start)*sizeof(*res));

int *lhs = start, *rhs = mid, *dst = res;

while (lhs = mid && rhs != end)

*dst++ = (*lhs <= *rhs) ? *Ihs++ : *rhs+4+;

while (Ihs 1= mid)

*dst++ = *lhs++;

while (rhs != end)

*dst++ = *rhs++;

// copy results
memcpy(start, res, (end - start)*sizeof(*res));

free(res);

// our multi-threaded entry point.

void merge_sort_mt(int *start, size_t len, int depth)

{

if (len <2)
return;
if (depth<=0 || len<4)
{
merge_sort_mt(start, len/2, 0);
merge_sort_mt(start+len/2, len-len/2, 0);
}
else
{

struct Params params = { start, len/2, depth/2 };

pthread_t thrd;

pthread_mutex_lock(&mtx);
printf("Starting subthread..\n");

pthread_mutex_unlock(&mtx);

// create our thread

pthread_create(&thrd, NULL, merge_sort_thread, ¶ms);

// recurse into our top-end parition

merge_sort_mt(start+len/2, len-len/2, depth/2);

// join on the launched thread

pthread_join(thrd, NULL);

pthread_mutex_lock(&mtx);
printf("Finished subthread.\n");

pthread_mutex_unlock(&mtx);

// merge the paritions.

merge(start, start+len/2, start+len);

// our thread-proc that invokes merge_sort. this just passes the
// given parameters off to our merge_sort algorithm
void *merge_sort_thread(void *pv)
{
struct Params *params = pv;
merge_sort_mt(params->start, params->len, params->depth);

return pv;

// public-facing api
void merge_sort(int *start, size_t len)

{

merge_sort_mt(start, len, 4); // 4 is a nice number, will use 7 threads.

int main()

{
static const unsigned int N = 2048;
int *data = malloc(N * sizeof(*data));

unsigned int i;

srand((unsigned)time(0));

for (i=0; i<N; ++i)

{
datal[i] = rand() % 1024,
printf("%4d ", datali]);
if ((i+1)%8 ==0)

printf("\n");
}
printf("\n");

// invoke our multi-threaded merge-sort
merge_sort(data, N);
for (i=0; i<N; ++i)
{

printf("%4d ", datali]);

if ((i+1)%8 == 0)

printf("\n");

}
printf("\n");

free(data);

return O;

