
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <pthread.h>

struct Params

{

 int *start;

 size_t len;

 int depth;

};

// only used for synchronizing stdout from overlap.

pthread_mutex_t mtx = PTHREAD_MUTEX_INITIALIZER;

// forward declare our thread proc

void *merge_sort_thread(void *pv);

// a simple merge algorithm. there are *several* more efficient ways

// of doing this, but the purpose of this exercise is to establish

// merge-threading, so we stick with simple for now.

void merge(int *start, int *mid, int *end)

{

 int *res = malloc((end - start)*sizeof(*res));

 int *lhs = start, *rhs = mid, *dst = res;

 while (lhs != mid && rhs != end)

 *dst++ = (*lhs <= *rhs) ? *lhs++ : *rhs++;

 while (lhs != mid)

 *dst++ = *lhs++;

 while (rhs != end)

 *dst++ = *rhs++;

 // copy results

 memcpy(start, res, (end - start)*sizeof(*res));

 free(res);

}

// our multi-threaded entry point.

void merge_sort_mt(int *start, size_t len, int depth)

{

 if (len < 2)

 return;

 if (depth <= 0 || len < 4)

 {

 merge_sort_mt(start, len/2, 0);

 merge_sort_mt(start+len/2, len-len/2, 0);

 }

 else

 {

 struct Params params = { start, len/2, depth/2 };

 pthread_t thrd;

 pthread_mutex_lock(&mtx);

 printf("Starting subthread...\n");

 pthread_mutex_unlock(&mtx);

 // create our thread

 pthread_create(&thrd, NULL, merge_sort_thread, ¶ms);

 // recurse into our top-end parition

 merge_sort_mt(start+len/2, len-len/2, depth/2);

 // join on the launched thread

 pthread_join(thrd, NULL);

 pthread_mutex_lock(&mtx);

 printf("Finished subthread.\n");

 pthread_mutex_unlock(&mtx);

 }

 // merge the paritions.

 merge(start, start+len/2, start+len);

}

// our thread-proc that invokes merge_sort. this just passes the

// given parameters off to our merge_sort algorithm

void *merge_sort_thread(void *pv)

{

 struct Params *params = pv;

 merge_sort_mt(params->start, params->len, params->depth);

 return pv;

}

// public-facing api

void merge_sort(int *start, size_t len)

{

 merge_sort_mt(start, len, 4); // 4 is a nice number, will use 7 threads.

}

int main()

{

 static const unsigned int N = 2048;

 int *data = malloc(N * sizeof(*data));

 unsigned int i;

 srand((unsigned)time(0));

 for (i=0; i<N; ++i)

 {

 data[i] = rand() % 1024;

 printf("%4d ", data[i]);

 if ((i+1)%8 == 0)

 printf("\n");

 }

 printf("\n");

 // invoke our multi-threaded merge-sort

 merge_sort(data, N);

 for (i=0; i<N; ++i)

 {

 printf("%4d ", data[i]);

 if ((i+1)%8 == 0)

 printf("\n");

 }

 printf("\n");

 free(data);

 return 0;

}

