Answer on Question \#53575, Engineering / Software Engineering

Task: Which of the following systems of periodic tasks are schedulable by the rate-monotonic algorithm? By the earliest-deadline-first algorithm? Explain your answer.
(a) $T=\{(8,3),(9,3),(15,3)\}$
(b) $T=\{(8,4),(12,4),(20,4)\}$
(c) $T=\{(8,4),(10,2),(12,3)\}$

Answer:

a) $T=\{(8,3),(9,3),(15,3)\}$
$U_{R M}(3) \approx 0.780$
$U=3 / 8+8 / 9+3 / 15=0.908>U R M$
schedulable utilization test is indeterminate for RM , shortest period is highest priority
$\mathrm{w} 1(\mathrm{t})=3, \mathrm{~W} 1=3 \leq 8, \mathrm{~T} 1$ is schedulable
$\mathrm{w} 2(\mathrm{t})=3+\lceil\mathrm{t} / 8\rceil \cdot 3=\mathrm{t}$
$\mathrm{W} 2=6 \leq 9, \rightarrow \mathrm{~T} 2$ is schedulable
$\mathrm{w} 3(\mathrm{t})=3+\lceil\mathrm{t} / 8\rceil \cdot 3+\lceil\mathrm{t} / 9\rceil \cdot 3=\mathrm{t}$
$\mathrm{W} 3=15 \leq 15, \therefore \mathrm{~T} 3$ is schedulable.
All tasks are schedulable under RM, therefore the system is schedulable under RM.
$\mathrm{U} \leq 1 \rightarrow$ the system is schedulable under EDF
b) $T=\{(8,4),(12,4),(20,4)\}$

The total utilization of tasks $=4 / 8+4 / 12+4 / 20=1.033$
A system of independent, preemptable tasks with relative deadlines equal to their periods is schedulable if and only if their total utilization is less than or equal to 1 . Therefore, T is not schedulable by RM or EDF.
Use TDA:
Check t=8, 12, 16, 20
Wi(t) <= t
$\mathrm{W} 1(\mathrm{t})=4<=\mathrm{t}, \mathrm{t}=8,12,16,20 \rightarrow$ Schedulable
$\mathrm{W} 2(\mathrm{t})=4+\lceil\mathrm{t} / 8\rceil * 4$
W2(8) $=4+4=8<=8 \rightarrow$ Schedulable
$\mathrm{W} 3(\mathrm{t})=4+\lceil\mathrm{t} / 8\rceil * 4+\lceil\mathrm{t} / 12\rceil * 4$
$W 3(8)=4+4+4=12$
$W 3(12)=4+8+4=16$
$W 3(16)=4+8+8=20$
$\mathrm{W} 3(20)=4+12+8=24 \rightarrow$ Not schdulable by RM
Schedulability test of EDF algorithm: Since $D k=P k, U=1.033>1$ therefore, it is not schedulable by EDF.
c) $T=\{(8,4),(10,2),(12,3)\}$

The total utilization of tasks $=4 / 8+2 / 10+3 / 12=0.95$
For RM:
The tasks are schedulable if the total utilization of tasks, U, is less or equal to $n\left(n^{\wedge}(1 / n)-1\right)$, where n is the number of tasks.
Urm $=n\left(n^{\wedge}(1 / n)-1\right)=3\left(2^{\wedge}(1 / 3)-1\right)=0.78<U=0.95 \rightarrow$ No conclusion.
Use TDA:
Check $\mathrm{t}=8,10,12$
$\mathrm{Wi}(\mathrm{t})<=\mathrm{t}$
$\mathrm{W} 1(\mathrm{t})=4<=\mathrm{t}, \mathrm{t}=8,10,12 \rightarrow$ Schedulable
$\mathrm{W} 2(\mathrm{t})=2+\lceil\mathrm{t} / 8\rceil 4$
W2(8) $=2+4=6<=8 \rightarrow$ Schedulable
$\mathrm{W} 3(\mathrm{t})=3+\lceil\mathrm{t} / 8\rceil 4+\lceil\mathrm{t} / 10\rceil 2$
$\mathrm{W} 3(8)=3+4+2=9$
$W 3(10)=3+8+2=13$
W3(12) $=3+8+4=15 \rightarrow$ Not schedulable
Therefore, it is not schedulable by using RM.

For EDF:
According to the schedulability Test for EDF algorithm:

$$
\sum_{k=1}^{n} e_{k} / \min \left(D_{k}, p_{k}\right) \leq 1
$$

In the case that $\mathrm{Dk}=\mathrm{Pk}$, the expression represents the total utilization of the tasks, which we have calculated. $U=0.95$ less than one. Therefore, the periodic tasks are schedulable by EDF algorithm.

